Description Usage Arguments Value Examples
This function fits the zero-inflation adjusted quantile regression model for the differential expression analysis in single cell RNA sequencing data
1 2 3 4 5 6 7 8 9 10 |
Y_matrix |
a matrix for expression values with row representing indiviudal genes and column representing cells |
colDat |
a dataframe including the individual cell information |
formula |
a formula with the predictors included in |
group |
the variable name in |
probs |
the quantile levels for the quantile regressions.
The default is |
log_i |
TRUE or FALSE indicate whether to apply log transformation. The default is TRUE. |
parallel |
TRUE or FALSE indicate whether to apply parallel computing. The default is TRUE. |
no.core |
The number of cores used in parallel computing. The default
is all available cores |
pvalue |
The p-values of all genes for testing the signficance
of the specified |
res |
The full results from function |
1 2 3 4 5 6 7 8 9 10 11 | #Use simuluated data
ymatrix = matrix(round(100* runif(100*150)), ncol = 100)
rownames(ymatrix) = paste0('gene', 1:150)
colDat = data.frame(condition = rep(c(1, 0), e = 50))
res = ziaq(ymatrix, colDat, formula = ~ condition,
group = 'condition', probs = c(0.25, 0.5, 0.75),
log_i = TRUE, parallel = FALSE, no.core = 1)
print(res$pvalue)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.