ziaq: Zero-inflation adjusted quantile regression for single cell...

Description Usage Arguments Value Examples

Description

This function fits the zero-inflation adjusted quantile regression model for the differential expression analysis in single cell RNA sequencing data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
ziaq(
  Y_matrix,
  colDat,
  formula = ~condition,
  group = "condition",
  probs = c(0.25, 0.5, 0.75),
  log_i = TRUE,
  parallel = FALSE,
  no.core = detectCores()
)

Arguments

Y_matrix

a matrix for expression values with row representing indiviudal genes and column representing cells

colDat

a dataframe including the individual cell information

formula

a formula with the predictors included in colDat. The default is ~condition.

group

the variable name in colDat for the factor used in group comparsion. The default is condition.

probs

the quantile levels for the quantile regressions. The default is c(0.25, 0.5, 0.75)

log_i

TRUE or FALSE indicate whether to apply log transformation. The default is TRUE.

parallel

TRUE or FALSE indicate whether to apply parallel computing. The default is TRUE.

no.core

The number of cores used in parallel computing. The default is all available cores detectCores()

Value

pvalue

The p-values of all genes for testing the signficance of the specified group variable.

res

The full results from function ziaq_fit for all genes

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
#Use simuluated data
ymatrix = matrix(round(100* runif(100*150)), ncol = 100)
rownames(ymatrix) = paste0('gene', 1:150)

colDat = data.frame(condition = rep(c(1, 0), e = 50))

res = ziaq(ymatrix, colDat, formula = ~ condition,
          group = 'condition', probs = c(0.25, 0.5, 0.75),
          log_i = TRUE, parallel = FALSE, no.core = 1)

print(res$pvalue)

gefeizhang/ZIAQ documentation built on Feb. 26, 2020, 6:15 p.m.