R/cosg.R

Defines functions cosg select_top_n

Documented in cosg

select_top_n<-function(scores,n_top){
  d <- data.frame(
    x   = data.table::copy(scores),
    indice=seq(1,length(scores)))

  data.table::setDT(d)
  data.table::setorder(d,-x)
  n_top_indice<-d$indice[1:n_top]
  return(n_top_indice)
}

#' Accurate and fast cell marker gene identification with COSG
#'
#' Marker gene identification for cell groups in a given dataset.
#'
#' @param assay Assay to use in marker gene identification
#' @param slot Slot to pull data from
#' @param mu The penalty factor to penalize gene expression in cells not belonging to the cluster of interest
#' @param n_genes_user Number of top ranked genes returned in the result
#' @return A list containing two dataframes for ranked marker genes' names and scores, respectively
#' @export
#' @examples
#' suppressMessages(library(Seurat))
#' data('pbmc_small',package='Seurat')
#' # Check cell groups:
#' table(Idents(pbmc_small))
#' #######
#' # Run COSG:
#' marker_cosg <- cosg(
#'  pbmc_small,
#'  groups='all',
#'  assay='RNA',
#'  slot='data',
#'  mu=1,
#'  n_genes_user=100)
#' #######
#' # Check the marker genes:
#'  head(marker_cosg$names)
#'  head(marker_cosg$scores)

cosg<-function(
    object,
    groups='all',
    assay='RNA',
    slot='data',
    mu=1,
    remove_lowly_expressed=TRUE,
    expressed_pct=0.1,
    n_genes_user=100
){
   
    ### Obtain the cellxgene data
    genexcell<-Seurat::GetAssayData(object = object[[assay]], slot = slot)

    if (length(groups)>1){
        object <- subset(x = object, idents = groups)
        group_info <- Seurat::Idents(object = object)
        
    }else{
        if (groups == 'all'){
           group_info <- Seurat::Idents(object = object)
        }else{
          stop('Cannot perform marker gene identification on a single cluster. Please reset the groups variable.')
        }
        
    }
    

    ### unique groups
    groups_order=sort(unique(group_info))
    n_cluster=length(groups_order)

    if (n_cluster == 1){
        stop('Cannot perform marker gene identification on a single cluster.')}
    

    n_cell=ncol(genexcell)
    n_gene=nrow(genexcell)
    gene_name=rownames(genexcell)
    
    ### If sepcifying too many genes to return
    if (n_genes_user>n_gene){
        n_genes_user=n_gene
    }


    cluster_mat=matrix(0,nrow =n_cluster,ncol = n_cell)

    order_i=1
    ### Set gene lambda and gene omega
    for (group_i in groups_order){
        idx_i=group_info==group_i 
        cluster_mat[order_i,idx_i]=1
        order_i=order_i+1
    }


    cluster_mat_sparse=as(cluster_mat, "dgCMatrix")
    ### Calculate the cosine similarity
    cosine_sim=proxyC::simil(genexcell,cluster_mat_sparse, method = "cosine",drop0=TRUE)
    
    pos_nonzero = cosine_sim != 0
    pos_nonzero=which(as.matrix(pos_nonzero),arr.ind = TRUE)
    
    #### Second-stage
    genexlambda=cosine_sim*cosine_sim
    e_power2_sum=Matrix::rowSums(genexlambda)

    if (mu==1){
         genexlambda[pos_nonzero]=genexlambda[pos_nonzero]/(replicate(ncol(genexlambda),e_power2_sum)[as.matrix(pos_nonzero)])
    }else{
        genexlambda[pos_nonzero]=genexlambda[pos_nonzero]/((
            (1-mu)*genexlambda[pos_nonzero] + mu * (replicate(ncol(genexlambda),e_power2_sum)[as.matrix(pos_nonzero)])
        ))
    }

    genexlambda=genexlambda*cosine_sim

    rank_stats_names=data.frame(matrix(matrix(), n_genes_user, length(groups_order),
                        dimnames=list(seq(1,n_genes_user), groups_order)),
                        stringsAsFactors=F)
    rank_stats_scores=data.frame(matrix(matrix(), n_genes_user, length(groups_order),
                        dimnames=list(seq(1,n_genes_user), groups_order)),
                        stringsAsFactors=F)

    order_i=1
    ### Set gene lambda and gene omega
    for (group_i in groups_order){
        idx_i=group_info==group_i 
        scores=genexlambda[,order_i]
      
        ### Mask these genes expressed in less than given percentage of cells in the cluster of interest
        if(remove_lowly_expressed){
            # https://stackoverflow.com/questions/51560456/r-package-matrix-get-number-of-non-zero-entries-per-rows-columns-of-a-sparse
            n_cells_expressed=tabulate(genexcell[,idx_i]@i + 1)
            n_cells_i=sum(idx_i)
            scores[n_cells_expressed<n_cells_i*expressed_pct]= -1
        }
      
        global_indices = select_top_n(scores, n_genes_user)
        rank_stats_names[,order_i]=gene_name[global_indices]
        rank_stats_scores[,order_i]=scores[global_indices]

        ### save the group names
        order_i=order_i+1
    }
    
    colnames(rank_stats_names) <- groups_order
    colnames(rank_stats_scores) <- groups_order
    
    ###
    ranks_stats=list(
        names=rank_stats_names,
        scores=rank_stats_scores

    )
    ### return
    return(ranks_stats)
}
genecell/COSGR documentation built on Jan. 3, 2023, 10:57 a.m.