test_that("ISR() obtains the estimators of the PCA-based missing data with HC", {
library(MASS)
set.seed(88)
etatol=0.9
n=100;p=10;per=0.1
mu=as.matrix(runif(p,0,10))
sigma=as.matrix(runif(p,0,1))
ro=as.matrix(c(runif(round(p/2),-1,-sqrt(0.75)),runif(p-round(p/2),sqrt(0.75),1)))
RO=ro%*%t(ro);diag(RO)=1
Sigma=sigma%*%t(sigma)*RO
X0=data=mvrnorm(n,mu,Sigma)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
n=nrow(X0);p=ncol(X0)
mr=which(is.na(X0)==TRUE)
m=nrow(as.matrix(mr))
cm0=colMeans(X0,na.rm=T)
ina=as.matrix(mr%%n)
jna=as.matrix(floor((mr+n-1)/n))
data0[is.na(data0)]=cm0[ceiling(which(is.na(X0))/n)]
X=as.matrix(data0)
Z=scale(X,center=TRUE,scale=FALSE)
niter=0;d=1;tol=1e-5;nb=10
while((d>=tol) & (niter<=nb)){#4
niter=niter+1
Zold=Z
lambda=svd(cor(Z))$d
l=lambda/sum(lambda)
J=rep(l,times=p);dim(J)=c(p,p)
upper.tri(J,diag=T);J[lower.tri(J)]=0
eta=matrix(colSums(J),nrow = 1,ncol = p,byrow = FALSE)
k=which(eta>=etatol)[1]
Ak=matrix(svd(Z)$v[,1:k],p,k)
Lambdak=diag(sqrt(lambda[1:k]),k,k)
for( i in 1:n){#5
M=is.na(X0[i,])
job=which(M==FALSE);jna=which(M==TRUE)
piob=nrow(as.matrix(job));pina=nrow(as.matrix(jna))
while((piob>0)&(pina>0)){#6
Qi=matrix(0,p,p)
for( u in 1:piob){#7
Qi[job[u],u]=1
}#7
for( v in 1:pina){#7
Qi[jna[v],v+piob]=1
}#7
zQi=Z[i,]%*%Qi
ZQi=Z%*%Qi#
AQi=t(t(Ak)%*%Qi)
ziob=matrix(zQi[,1:piob],1,piob)
zina=matrix(zQi[,piob+(1:pina)],1,pina)
Ziob=matrix(ZQi[,1:piob],n,piob,byrow=FALSE)
Zina=matrix(ZQi[,piob+(1:pina)],n,pina,byrow=FALSE)
Aiob=matrix(AQi[1:piob,],piob,k,byrow=FALSE)
Aina=matrix(AQi[piob+(1:pina),],pina,k,byrow=FALSE)
Ti=Ziob%*%Aiob;Ti
betaihat=ginv(t(Ti)%*%Ti)%*%t(Ti)%*%Zina;betaihat
zinahat=ziob%*%Aiob%*%betaihat;zinahat
ZQi[i,piob+(1:pina)]=zinahat
Z=Zi=ZQi%*%t(Qi)
pina=0
}#6
}#5
ZISR=Znew=Z
d=sqrt(sum(diag((t(Zold-Znew)%*%(Zold-Znew)))))
}#4
XISR=Xnew=Znew+matrix(rep(1,n*p),ncol=p)%*%diag(cm0)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.