Description Usage Arguments Value Examples
View source: R/ludwig_functions.R
This function allows for estimating an undirected graphical model using MCMC via JAGS (Just another Gibb's sampler).
1 2 | estnet_bayes(data, n_chains = 2, n_iter = 1000, n_burnin = 1000,
n_adapt = 1000, n_thin = 4)
|
data |
a binary input matrix |
n_chains |
the number of chains used |
n_iter |
the number of MCMC iterations |
n_burnin |
the number of burn-in iterations |
n_adapt |
the number of adaption iterations |
n_thin |
the thinning interval |
The function returns a list of class estnet_bayes, containing...
the objects returned by the function create_matrix
s_coda the raw coda samples
fitted expected values of the nodes given the posterior means of the network parameters
entropy_rate the entropy rate based on the network parameters' posterior means
logL the log pseudo likelihood
deviance the deviance
merged chains the merged MCMC chains
used_samples the actual number of samples to assess the posterior distributions
posterior_means the parameter's posterior means
coef the parameter's posterior means
posterior_sd the parameter's posterior standard deviations
weights a matrix of the network parameter's posterior means
weights_sd a matrix of the network parameter's posterior standard deviations
weights the estimated weights
thresholds posterior means of the threshold parameters
thresholds_sd posterior standard deviations of the threshold parameters
n_chains number of MCMC chains
thinning thinning interval
burnin burnin iterations
n_iter number of iterations
actual actual iterations used to compute the posterior statistics
time the time used for the estimation process
jags the JAGS model object
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.