PhenoTrs <-
function(
##title<<
## Method 'Trs' to calculate phenology metrics
##description<<
## This function implements threshold methods for phenology. This is rather an internal function; please use the function \code{\link{Phenology}} to apply this method.
x,
### seasonal cycle of one year
approach = c("White", "Trs"),
### approach to be used to calculate phenology metrics. 'White' (White et al. 1997) or 'Trs' for simple threshold.
trs = 0.5,
### threshold to be used for approach "Trs"
min.mean = 0.1,
### minimum mean annual value in order to calculate phenology metrics. Use this threshold to suppress the calculation of metrics in grid cells with low average values
formula=NULL,
uncert=FALSE,
params=NULL,
breaks,
### calculate phenology metrics or return NA?
# plot = FALSE,
### plot results?
...
### further arguments (currently not used)
##references<<
## White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem Cycles 11:217-234.
##seealso<<
## \code{\link{Phenology}}
) {
if (all(is.na(x))) return(c(sos=NA, eos=NA, los=NA, pop=NA, mgs=NA, rsp=NA, rau=NA, peak=NA, msp=NA, mau=NA))
# get statistical values
n <- index(x)[length(x)]
avg <- mean(x, na.rm=TRUE)
x2 <- na.omit(x)
avg2 <- mean(x2[x2 > min.mean], na.rm=TRUE)
peak <- max(x, na.rm=TRUE)
mn <- min(x, na.rm=TRUE)
ampl <- peak - mn
# get peak of season position
pop <- median(index(x)[which(x == max(x, na.rm=TRUE))])
# return NA if amplitude is too low or time series has too many NA values
# if (!calc.pheno) {
# if (avg < min.mean) { # return for all metrics NA if mean is too low
# return(c(sos=NA, eos=NA, los=NA, pop=NA, mgs=NA, rsp=NA, rau=NA, peak=NA, msp=NA, mau=NA))
# } else { # return at least annual average and peak if annual mean > min.mean
# return(c(sos=NA, eos=NA, los=NA, pop=pop, mgs=avg2, rsp=NA, rau=NA, peak=peak, msp=NA, mau=NA))
# }
# }
# select (or scale) values and thresholds for different methods
approach <- approach[1]
if (approach == "White") {
# scale annual time series to 0-1
ratio <- (x - mn) / ampl
# trs <- 0.5
trs.low <- trs - 0.1
trs.up <- trs + 0.1
}
if (approach == "Trs") {
ratio <- x
a <- diff(range(ratio, na.rm=TRUE)) * 0.1
trs.low <- trs - a
trs.up <- trs + a
}
# identify greenup or dormancy period
.Greenup <- function (x, ...)
{
ratio.deriv <- c(NA, diff(x))
greenup <- rep(NA, length(x))
greenup[ratio.deriv > 0] <- TRUE
greenup[ratio.deriv < 0] <- FALSE
return(greenup)
}
greenup <- .Greenup(ratio)
# select time where SOS and EOS are located (around trs value)
bool <- ratio >= trs.low & ratio <= trs.up
# get SOS, EOS, LOS
soseos <- index(x)
sos <- round(median(soseos[greenup & bool], na.rm=TRUE))
eos <- round(median(soseos[!greenup & bool], na.rm=TRUE))
los <- eos - sos
los[los < 0] <- n + (eos[los < 0] - sos[los < 0])
# get MGS, MSP, MAU
mgs <- mean(x[ratio > trs], na.rm=TRUE)
msp <- mau <- NA
if (!is.na(sos)) {
id <- (sos-10):(sos+10)
id <- id[(id > 0) & (id < n)]
msp <- mean(x[which(index(x) %in% id==TRUE)], na.rm=TRUE)
}
if (!is.na(eos)) {
id <- (eos-10):(eos+10)
id <- id[(id > 0) & (id < n)]
mau <- mean(x[which(index(x) %in% id==TRUE)], na.rm=TRUE)
}
metrics <- c(sos=sos, eos=eos, los=los, pop=pop, mgs=mgs, rsp=NA, rau=NA, peak=peak, msp=msp, mau=mau)
# if (plot) {
# if (approach == "White") PlotPhenCycle(x, metrics=metrics, trs=trs, ...)
# if (approach == "Trs") PlotPhenCycle(ratio, metrics=metrics, trs=trs, ...)
# }
return(metrics)
### The function returns a vector with SOS, EOS, LOS, POP, MGS, rsp, rau, PEAK, MSP and MAU. }
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.