Description Usage Arguments Value Author(s) See Also Examples
This function takes the output from a the mob.data.array function and finds the
largest subset of locations (districts) that have a minumum number of observations for all ij routes. The subset
is found by sequentially removing the location with the largest number of routes below the defined
threshold (min.samp) until all locations contain at least min.samp number of observations for each route.
1 | get.subsamp(x, min.locations, min.samp)
|
x |
a three dimensional array produced by the |
min.locations |
minimum number of locations (rows and columns) to keep |
min.samp |
minimum sample size |
a three dimensional array containing the subset of x
John Giles
Other data synthesis:
calc.prop.tot.trips(),
calc.route.type(),
calc.samp.size(),
get.crossdist(),
get.distance.class(),
get.distance.counts(),
get.distance.matrix(),
get.district.names.xy(),
get.district.pop(),
get.duration.counts(),
get.holidays(),
get.sparse.mob.matrix(),
get.stay.data(),
get.xy.counts(),
mob.data.array(),
parse.longform()
1 2 3 4 5 6 | load('./data/duration_data_arrays_3day_full.Rdata') # y.month, y.route, y.pop
subsamp <- get.subsamp(y.route, min.locations=30, min.samp=10)
district.subset <- dimnames(subsamp)$origin
trip.map(as.numeric(district.subset))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.