Description Usage Arguments Value Author(s) See Also Examples
This function takes the output from a the mob.data.array
function and finds the
largest subset of locations (districts) that have a minumum number of observations for all ij routes. The subset
is found by sequentially removing the location with the largest number of routes below the defined
threshold (min.samp
) until all locations contain at least min.samp
number of observations for each route.
1 | get.subsamp(x, min.locations, min.samp)
|
x |
a three dimensional array produced by the |
min.locations |
minimum number of locations (rows and columns) to keep |
min.samp |
minimum sample size |
a three dimensional array containing the subset of x
John Giles
Other data synthesis:
calc.prop.tot.trips()
,
calc.route.type()
,
calc.samp.size()
,
get.crossdist()
,
get.distance.class()
,
get.distance.counts()
,
get.distance.matrix()
,
get.district.names.xy()
,
get.district.pop()
,
get.duration.counts()
,
get.holidays()
,
get.sparse.mob.matrix()
,
get.stay.data()
,
get.xy.counts()
,
mob.data.array()
,
parse.longform()
1 2 3 4 5 6 | load('./data/duration_data_arrays_3day_full.Rdata') # y.month, y.route, y.pop
subsamp <- get.subsamp(y.route, min.locations=30, min.samp=10)
district.subset <- dimnames(subsamp)$origin
trip.map(as.numeric(district.subset))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.