Description Usage Arguments Value Author(s) See Also Examples
This function builds data arrays of total trip counts from longform mobility data (such as that produced by the parse.longform
function).
If time=NULL
(default), route-level counts are returned. If a vector of times (e.g. week or month) is provided, an additional dimension is added to
the array. If a covariate is provided in variable
, the function will return total trip counts that are aggregated according to this variable (e.g. trip distance or trip duration).
1 2 3 4 5 6 7 8 9 |
orig |
a vector of origin districts |
dest |
a vector of destination districts |
time |
a vector of the time of each observation (e.g. day, week, month, year). When |
count |
a vector of total counts of each observation |
variable |
a vector of covariate values with which to condition trip counts (e.g. distance or trip duration) |
name |
a character string giving the name of the variable; expects either |
agg.int |
an integer giving the interval by which to aggregate the given variable, default = 1 (not aggregated). When |
A 2-, 3-, or 4-dimensional array depending on input parameters. Cells in output array represent total trip counts.
John Giles
Other data synthesis:
calc.prop.tot.trips()
,
calc.route.type()
,
calc.samp.size()
,
get.crossdist()
,
get.distance.class()
,
get.distance.counts()
,
get.distance.matrix()
,
get.district.names.xy()
,
get.district.pop()
,
get.duration.counts()
,
get.holidays()
,
get.sparse.mob.matrix()
,
get.stay.data()
,
get.subsamp()
,
get.xy.counts()
,
parse.longform()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # Subset of 5 high pop density and 7 low pop density
df <- read.csv("./data/trip_durations_longform_metadata_12_dists_hi_lo_dens.csv", stringsAsFactors=F)
# Simple route-level movement matrix
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
name='movement')
str(m)
# Week-level movement matrix
m <- mob.data.array(orig=df$from,
dest=df$to,
time=df$week,
count=df$count,
name='movement')
str(m)
# Route-level distance matrix
# Counts total trips that occur with distance intervals of width agg.int km
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
variable=df$distance,
name='distance') # no aggregation so trips represent counts per each 1 km
str(m)
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
variable=df$distance,
agg.int=5, # count trips per 5km intervals
name='distance')
str(m)
# Month-level aggregated distance matrix
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
time=df$month,
variable=df$distance,
agg.int=5, # count trips per 5km intervals
name='distance')
str(m)
# Route-level duration matrix
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
variable=df$duration,
name='duration') # no aggregation so counts represent total trips for all durations in 1 day increments
str(m)
# Month-level aggregated duration matrix
m <- mob.data.array(orig=df$from,
dest=df$to,
time=df$month,
count=df$count,
variable=df$duration,
agg.int=3, # aggregated to a generation time of 3 days
name='duration')
str(m)
# Total number trips leaving each origin across all times
m <- mob.data.array(orig=df$from,
dest=df$to,
count=df$count,
name='leave')
str(m)
# Total number trips leaving each origin on each day of the year
m <- mob.data.array(orig=df$from,
dest=df$to,
time=df$doy,
count=df$count,
name='leave')
str(m)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.