Description Usage Arguments Value Author(s) See Also Examples
This function takes the output from a TSIR simulation and calculates the peak of the waiting time distribution and the mean proportion infected in each district.
1 | calc.timing.magnitude(sim, N, pathogen, intro)
|
sim |
simulation object containing simulations with both basic gravity and gravity with duration |
N |
a named vector of population size of each district |
pathogen |
name of pathogen |
intro |
type of introduction |
a longform dataframe to use for plotting
John Giles
Other simulation:
calc.hpd()
,
calc.prop.inf()
,
calc.prop.remain()
,
calc.wait.time()
,
decay.func()
,
get.age.beta()
,
get.beta.params()
,
sim.TSIR.full()
,
sim.TSIR()
,
sim.combine.dual()
,
sim.combine()
,
sim.gravity.duration()
,
sim.gravity()
,
sim.lambda()
,
sim.pi()
,
sim.rho()
,
sim.tau()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | sims <- c(
"./output/TSIR_sim_influenza_high.Rdata",
"./output/TSIR_sim_influenza_low.Rdata",
"./output/TSIR_sim_measles_high.Rdata",
"./output/TSIR_sim_measles_low.Rdata",
"./output/TSIR_sim_malaria_high.Rdata",
"./output/TSIR_sim_malaria_low.Rdata",
"./output/TSIR_sim_ebola_high.Rdata",
"./output/TSIR_sim_ebola_low.Rdata",
"./output/TSIR_sim_pertussis_high.Rdata",
"./output/TSIR_sim_pertussis_low.Rdata",
"./output/TSIR_sim_sars_high.Rdata",
"./output/TSIR_sim_sars_lowRdata"
)
# Calculate peak waiting time and proportion infected for each scenario and district and combine
cl <- parallel::makeCluster(4)
doParallel::registerDoParallel(cl)
parallel::clusterExport(cl, ls(environment()), envir=environment())
sims <- foreach (i=1:length(sims), .combine='rbind', .packages=c('stringr', 'hmob')) %dopar% {
sim <- load.obj(sims[i])
sim.names <- str_split(str_sub(sims[i], end=-7), "_", simplify=TRUE)
calc.timing.magnitude(sim=sim, N=N.pop, pathogen=sim.names[1,3], intro=sim.names[1,4])
}
# Add waiting time in days
sims$days <- NA
sims$days[sims$pathogen == 'influenza'] <- sims$wait.time[sims$pathogen == 'influenza']*3
sims$days[sims$pathogen == 'measles'] <- sims$wait.time[sims$pathogen == 'measles']*14
sims$days[sims$pathogen == 'malaria'] <- sims$wait.time[sims$pathogen == 'malaria']*60
sims$days[sims$pathogen == 'ebola'] <- sims$wait.time[sims$pathogen == 'ebola']*16.6
sims$days[sims$pathogen == 'pertussis'] <- sims$wait.time[sims$pathogen == 'pertussis']*25
sims$days[sims$pathogen == 'sars'] <- sims$wait.time[sims$pathogen == 'sars']*8
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.