metric_PrecisionRecall: metric_PrecisionRecall

Description Usage Arguments Value See Also Examples

View source: R/metric_PrecisionRecall.R

Description

Return Weighted mean of precisions achieved at each threshold

Usage

1
metric_PrecisionRecall(actual, predicted, weight = NULL, na.rm = FALSE)

Arguments

actual

Array[Numeric] - 0 or 1 - Values we are aiming to predict.

predicted

Array[Numeric] / DataFrame[Numeric] - Between 0 and 1 - Values that we have predicted.

weight

Optional: Array[Numeric] - Weighting of predictions. If NULL even weighting is used.

na.rm

logical. Should missing values be removed?

Value

Weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight. Single value if predicted is vector. Named list if predicted is dataframe.

See Also

plot_PrecisionRecall

Examples

1
2
3
4
5
data <- data.frame(x1=runif(100), x2=runif(100), noise=rnorm(100, sd=0.2)) %>%
  mutate(target=ifelse(x1 + noise>0.5, 1, 0))

metric_PrecisionRecall(actual=data$target, predicted=data$x1)
metric_PrecisionRecall(actual=data$target, predicted=data[c("x1","x2")])

gloverd2/admr documentation built on Dec. 2, 2020, 11:16 p.m.