Description Usage Arguments Value See Also Examples
View source: R/plot_PrecisionRecall.R
Returns a plot showing the Precision-Recall curve of one or more models compared to the Null model
#' Note: Predictions should be annualised (independent of exposure)
1 2 3 4 5 6 7 | plot_PrecisionRecall(
actual,
predicted,
weight = NULL,
na.rm = FALSE,
use_plotly = TRUE
)
|
actual |
Array[Numeric] - 0 or 1 - Values we are aiming to predict. |
predicted |
Array[Numeric] / DataFrame[Numeric] - Between 0 and 1 - Values that we have predicted. |
weight |
Optional: Array[Numeric] - Weighting of predictions. If NULL even weighting is used. |
na.rm |
logical. Should missing values be removed? |
use_plotly |
Optional: boolean - If TRUE plotly object is returned else ggplot2 object |
plotly object of showing Precision-Recall curve for all predictions given
1 2 3 4 5 | data <- data.frame(x1=runif(100), x2=runif(100), noise=rnorm(100, sd=0.2)) %>%
mutate(target=ifelse(x1 + noise>0.5, 1, 0))
plot_PrecisionRecall(actual=data$target, predicted=data$x1)
plot_PrecisionRecall(actual=data$target, predicted=data[c("x1","x2")])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.