plot_PrecisionRecall: plot_PrecisionRecall

Description Usage Arguments Value See Also Examples

View source: R/plot_PrecisionRecall.R

Description

Returns a plot showing the Precision-Recall curve of one or more models compared to the Null model

#' Note: Predictions should be annualised (independent of exposure)

Usage

1
2
3
4
5
6
7
plot_PrecisionRecall(
  actual,
  predicted,
  weight = NULL,
  na.rm = FALSE,
  use_plotly = TRUE
)

Arguments

actual

Array[Numeric] - 0 or 1 - Values we are aiming to predict.

predicted

Array[Numeric] / DataFrame[Numeric] - Between 0 and 1 - Values that we have predicted.

weight

Optional: Array[Numeric] - Weighting of predictions. If NULL even weighting is used.

na.rm

logical. Should missing values be removed?

use_plotly

Optional: boolean - If TRUE plotly object is returned else ggplot2 object

Value

plotly object of showing Precision-Recall curve for all predictions given

See Also

metric_PrecisionRecall

Examples

1
2
3
4
5
data <- data.frame(x1=runif(100), x2=runif(100), noise=rnorm(100, sd=0.2)) %>%
  mutate(target=ifelse(x1 + noise>0.5, 1, 0))

plot_PrecisionRecall(actual=data$target, predicted=data$x1)
plot_PrecisionRecall(actual=data$target, predicted=data[c("x1","x2")])

gloverd2/admr documentation built on Dec. 2, 2020, 11:16 p.m.