Description Usage Arguments Examples
misscode turns NAs of numerical variables into a value slightly less that non-missing values. Missing values for factors are made into a non-missing level. When applied to a data frame, a new variable .nmiss is added to the data frame indicating the number of variables with missing data in each row of the data frame.
| 1 | misscode.default(x, ..., offset = 0.1)
 | 
| x | |
| ... | |
| offset | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.
## The function is currently defined as
function (x, ..., offset = 0.1) 
{
    rr <- range(x, na.rm = TRUE)
    vmiss <- min(x, na.rm = TRUE) - offset * diff(rr)
    nas <- is.na(x)
    x[nas] <- vmiss
    attr(x, "nas") <- nas
    x
  }
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.