Description Usage Arguments Examples
misscode
turns NAs of numerical variables into a value slightly less that non-missing values. Missing values for factors are made into a non-missing level. When applied to a data frame, a new variable .nmiss
is added to the data frame indicating the number of variables with missing data in each row of the data frame.
1 | misscode.default(x, ..., offset = 0.1)
|
x |
|
... |
|
offset |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, ..., offset = 0.1)
{
rr <- range(x, na.rm = TRUE)
vmiss <- min(x, na.rm = TRUE) - offset * diff(rr)
nas <- is.na(x)
x[nas] <- vmiss
attr(x, "nas") <- nas
x
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.