R/randomelo.R

Defines functions randomelo

Documented in randomelo

# randomelo 15_09_29
# used in other functions:
# ---

#' calculate Elo ratings from an interaction matrix
#'
#' calculate Elo ratings from an interaction matrix based on randomly
#' generated sequences
#'
#' @param interactionmatrix square interaction matrix with winner in rows and
#'        losers in columns, for example the output from
#'        \code{\link{creatematrix}}
#' @param runs number of randomly generated sequences based on the interactions
#'        in the \code{interactionmatrix}
#' @param normprob logical (by default \code{TRUE}). Should a normal curve be
#'        assumed for calculating the winning/losing probablities, or a logistic
#'        curve. See \code{\link{winprob}} for details
#' @param progressbar logical, should progress bars be displayed, by default
#'        \code{progressbar=TRUE}
#' @param k numeric, factor \emph{k} that determines the maximum change in
#'        ratings. By default \code{k=100}
#'
#' @return list of length 2. The first element contains a matrix with the final
#' rating of each individual from each random sequence. IDs are in the columns,
#' each run is represented as one row. The second element of the list contains
#' the original interaction matrix.
#'
#' @author Christof Neumann
#'
#' @export
#'
#' @examples
#' data(adv)
#' elores <- elo.seq(winner = adv$winner, loser = adv$loser, Date = adv$Date)
#' mat <- creatematrix(elores)
#' res <- randomelo(mat, 10)
#' data.frame(ID = colnames(res[[1]]), avg = round(colMeans(res[[1]]), 1))

randomelo <- function(interactionmatrix,
                      runs = 2000,
                      normprob = TRUE,
                      k = 100,
                      progressbar = FALSE) {
  # create a sequence from the matrix
  winner <- c()
  loser <- c()
  for (i in seq_len(nrow(interactionmatrix))) {
    for (j in seq_len(ncol(interactionmatrix))) {
      if (interactionmatrix[i, j] > 0) {
        winner <- c(winner, rep(rownames(interactionmatrix)[i],
                                interactionmatrix[i, j]))
        loser <- c(loser, rep(colnames(interactionmatrix)[j],
                              interactionmatrix[i, j]))
      }
    }
  }

  allids <- unique(c(winner, loser))
  xdate <- seq(from = as.Date("2000-01-01"),
               to = as.Date("2000-01-01") + length(winner) - 1,
               by = "day")
  # the starting sequence (which will actually not be used, but only randomized
  # versions of it...)
  xdata <- data.frame(Date = xdate, winner, loser)
  rm(i, j, winner, loser, xdate)

  res <- matrix(ncol = length(allids), nrow = runs, 0)
  colnames(res) <- allids

  if (progressbar) {
    progbar <- txtProgressBar(min = 0, max = runs, style = 3, char = ".")
  }

  for (i in 1:runs) {
    tempdata <- xdata[sample(1:nrow(xdata)), ]
    rownames(tempdata) <- NULL
    tempres <- elo.seq(winner = tempdata$winner,
                       loser = tempdata$loser,
                       Date = tempdata$Date,
                       progressbar = FALSE,
                       runcheck = FALSE,
                       normprob = normprob,
                       k = k)
    res[i, ] <- extract_elo(tempres)[colnames(res)]
    if (progressbar) setTxtProgressBar(progbar, i)
  }

  outp <- list()
  outp[[1]] <- res
  outp[[2]] <- interactionmatrix
  class(outp) <- "randomelo"
  outp
}
gobbios/EloRating documentation built on July 19, 2024, 4:05 a.m.