##' Prepare BART
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_PRFBM -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_PRFBM
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_BART <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_BART)
# Numero de infladas de cada globo que no revento
# en que inflada reventaron
# recaudacion total
# cantidad de globos que revientan
#
# dimensions = c("InflatesSafe", "InflatesExplode", "TotalIncome", "NumberExplode")
# BART_01_round_money
# BART_01_rounds
# BART_01_status
# BART_01_total_money
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
# dimensions = c("InflatesSafe", "InflatesExplode", "TotalIncome", "NumberExplode"), # Use names of dimensions, "" or comment out line
dimensions = c("meanRoundsSafe", "meanRoundsExplode", "numberSafe", "numberExplode", "totalMoney"),
help_names = FALSE) # help_names = FALSE once the script is ready
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean, short_name_scale = short_name_scale_str, numeric_responses = FALSE, help_prepare = FALSE)
# Create long DIR ------------------------------------------------------------
# [ADAPT]: Items to ignore and reverse ---------------------------------------
# ****************************************************************************
items_to_ignore = c("00|00") # Ignore the following items: If nothing to ignore, keep "00|00"
items_to_reverse = c("00|00") # Reverse the following items: If nothing to ignore, keep "00|00"
# [END ADAPT]: ***************************************************************
# ****************************************************************************
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT]: RAW to DIR for individual items -----------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR = RAW
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Create DF_wide_RAW_DIR -----------------------------------------------------
# dimensions = c("MeanRounds_safe", "MeanRounds_explode", "N_safe", "N_explode", "TotalMoney")
# BART_01_round_money
# BART_01_rounds
# BART_01_status
# BART_01_total_money
# METHOD 1 -----------------------
DF_temp =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# Should be fixed
# dplyr::mutate(trialid =
# dplyr::case_when(
# grepl("round_money", trialid) ~ gsub("(.*)round_money", "\\1RoundMoney", trialid),
# grepl("total_money", trialid) ~ gsub("(.*)total_money", "\\1TotalMoney", trialid),
# grepl("explode_rounds", trialid) ~ gsub("(.*)explode_rounds", "\\1ExplodeRounds", trialid),
# TRUE ~ trialid)) |>
tidyr::separate(trialid, into = c("BART", "trialnum", "variable"), sep = "_") |>
tidyr::pivot_wider(names_from = variable, values_from = RAW) |>
dplyr::mutate(status = stringr::str_to_sentence(status))
DF_wide_Dimensions =
DF_temp |>
dplyr::group_by(id, status) |>
dplyr::summarise(BART_meanRounds = mean(as.numeric(rounds), na.rm = TRUE),
BART_number = dplyr::n(),
.groups = "drop") |>
tidyr::pivot_wider(names_from = status, values_from = c(BART_meanRounds, BART_number), names_sep = "") |>
dplyr::left_join(DF_temp |>
dplyr::group_by(id) |>
dplyr::summarise(BART_totalMoney = max(as.numeric(totalMoney)), .groups = "drop"),
by = "id"
) |>
dplyr::rename_with(~paste0(., "_DIRd"), BART_meanRoundsExplode:BART_totalMoney) |>
dplyr::mutate(dplyr::across(dplyr::ends_with("_DIRd"), ~tidyr::replace_na(.x, 0)))
# DF_wide_Dimensions
# USE name_DIRd1, name_DIRd2, name_DIRd3, name_DIRd4, name_DIRd5
DF_wide_RAW_DIR =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(dplyr::select(., -matches(items_to_ignore) & matches("_RAW")))),
!!names_list$name_DIR_NA := rowSums(is.na(dplyr::select(., -matches(items_to_ignore) & matches("_DIR"))))) |>
# [ADAPT]: Scales and dimensions calculations --------------------------------
# ****************************************************************************
# [USE STANDARD NAMES FOR Scales and dimensions: name_DIRt, name_DIRd1, etc.] Check with: standardized_names(help_names = TRUE)
dplyr::left_join(DF_wide_Dimensions, by = "id")
# dplyr::mutate(
#
# # Score Dimensions (see standardized_names(help_names = TRUE) for instructions)
# !!names_list$name_DIRd[1] := rowMeans(select(., matches("01") & matches("_DIR$")), na.rm = TRUE),
# !!names_list$name_DIRd[2] := rowMeans(select(., matches("02|03") & matches("_DIR$")), na.rm = TRUE),
# !!names_list$name_DIRd[3] := rowMeans(select(., matches("04_beneficio|06_beneficio") & matches("_DIR$")), na.rm = TRUE),
# !!names_list$name_DIRd[4] := rowMeans(select(., matches("05_beneficio|07_beneficio") & matches("_DIR$")), na.rm = TRUE)
#
#
# # Score Scale
# # !!names_list$name_DIRt := rowSums(across(all_of(matches("_DIR$"))), na.rm = TRUE)
#
# )
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.