##' Prepare DEMOGR3
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_DEMOGRNEELY -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_DEMOGR3
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_DEMOGR3 <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_DEMOGR3)
# NOTE --------------------------------------------------------------------
# We do not use DF_clean as the data is sensitive
# Read sensitive data -----------------------------------------------------
input_files_sensitive = list.files(path = ".vault/data_vault", pattern = "*.csv", full.names = TRUE)
if (length(input_files_sensitive) == 0) cli::cli_abort("DEMGR3 files should be in .vault/data_vault/")
DF_raw_sensitive = read_data(input_files_sensitive, is_sensitive = FALSE, save_output = FALSE)
DF_clean_sensitive = create_clean_data(DF_raw_sensitive)
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
# dimensions = c("NameDimension1", "NameDimension2"), # Use names of dimensions, "" or comment out line
help_names = FALSE) # help_names = FALSE once the script is ready
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean_sensitive, short_name_scale = short_name_scale_str, numeric_responses = FALSE, help_prepare = FALSE)
# Create long DIR ------------------------------------------------------------
# [ADAPT]: Items to ignore and reverse ---------------------------------------
# ****************************************************************************
items_to_ignore = c("00|00") # Ignore the following items: If nothing to ignore, keep "00|00"
items_to_reverse = c("00|00") # Reverse the following items: If nothing to ignore, keep "00|00"
# [END ADAPT]: ***************************************************************
# ****************************************************************************
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT]: RAW to DIR for individual items -----------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR =dplyr::case_when(
trialid == "DEMOGR3_01" ~ RAW,
trialid == "DEMOGR3_02" & RAW == "Hombre" ~ "1",
trialid == "DEMOGR3_02" & RAW == "Mujer" ~ "0",
trialid == "DEMOGR3_02" & RAW == "Otro" ~ "2",
trialid == "DEMOGR3_03" & RAW == "Sí" ~ "1",
trialid == "DEMOGR3_03" & RAW == "No" ~ "0",
trialid == "DEMOGR3_04" & RAW == "Sí" ~ "1",
trialid == "DEMOGR3_04" & RAW == "No" ~ "0",
trialid == "DEMOGR3_06" & RAW == "Sí" ~ "1",
trialid == "DEMOGR3_06" & RAW == "No" ~ "0",
trialid == "DEMOGR3_07" & RAW == "Sí" ~ "1",
trialid == "DEMOGR3_07" & RAW == "No" ~ "0",
trialid == "DEMOGR3_08" & RAW == "Sí" ~ "1",
trialid == "DEMOGR3_08" & RAW == "No" ~ "0",
trialid == "DEMOGR3_05" & RAW =="Educación básica incompleta o inferior." ~ "1",
trialid == "DEMOGR3_05" & RAW =="Básica completa." ~ "2",
trialid == "DEMOGR3_05" & RAW =="Media incompleta." ~ "3",
trialid == "DEMOGR3_05" & RAW =="Media completa / Técnica incompleta." ~ "4",
trialid == "DEMOGR3_05" & RAW =="Universitaria incompleta / Técnica completa" ~ "5",
trialid == "DEMOGR3_05" & RAW =="Universitaria completa." ~ "6",
trialid == "DEMOGR3_05" & RAW =="Postgrado (Master, Doctor o equivalente)." ~ "7",
trialid == "DEMOGR3_09" ~ RAW,
is.na(RAW) ~ NA_character_,
trialid %in% paste0(short_name_scale_str, "_", items_to_ignore) ~ NA_real_,
TRUE ~ "9999"
)
) |>
dplyr::mutate(DIR = as.numeric(DIR))
# Create DF_wide_RAW_DIR -----------------------------------------------------
DF_wide_RAW_DIR =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# SENSITIVE ---------------------------------------------------------------
# Item DEMOGR3_09 contains sensitive data
DF_output = DF_wide_RAW_DIR |> dplyr::select(-dplyr::starts_with("DEMOGR3_09"))
DF_sensitive = DF_wide_RAW_DIR |> dplyr::select(id, dplyr::starts_with("DEMOGR3_09"))
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_output)
# Save files --------------------------------------------------------------
save_files(DF_output, short_name_scale = short_name_scale_str, is_scale = TRUE, is_sensitive = FALSE)
save_files(DF_sensitive, short_name_scale = short_name_scale_str, is_scale = TRUE, is_sensitive = TRUE)
# Output of function ---------------------------------------------------------
return(DF_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.