library(targets)
# get all R functions from R folder
r_functions <- list.files("R", pattern = "*.R", full.names = TRUE)
sapply(r_functions, source)
options(tidyverse.quiet = TRUE)
# load required packages
tar_option_set(
packages = c(
"tidyverse",
"foreach",
"tidymodels"
)
)
# data pipeline
list(
# 1.0 Read data ----
tar_target(
data_list,
ingest_data("inst/extdata")
),
# 2.0 Extract Train data ----
tar_target(
train_data,
extract_data(data_list, "train")
),
# 3.0 Split data ----
tar_target(
split_data,
rsample::initial_split(train_data, prop = 3/4)
),
# 4.0 Data cleaning recipes ----
tar_target(
train_data_recipe,
data_cleaning_recipe(split_data)
),
# 5.0 ML models ----
## 5.1 XGBoost ----
tar_target(
xgb_model,
fit_xgboost(
train_split = split_data,
recipe = train_data_recipe
)
),
## 5.2 Random Forest ----
tar_target(
rf_model,
fit_rf(
train_split = split_data,
recipe = train_data_recipe
)
),
# 6.0 Select suitable model by RMSE ----
tar_target(
final_model,
suitable_model(
list_of_model = list(xgb_model, rf_model),
new_data = rsample::testing(split_data)
)
),
# 7.0 Extract Submission file ----
tar_target(
submission_data,
extract_data(data_list, "test")
),
# 8.0 Final Submission file ----
tar_target(
final_submission_data,
predict_submission(
final_model = final_model,
new_data = submission_data
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.