View source: R/accelerate_hep.R
accelerate_espar | R Documentation |
@description
accelerate_espar(
df,
value_col = "value",
ind_ids = billion_ind_codes("hep"),
scenario_col = "scenario",
start_year = 2018,
baseline_year = 2018,
end_year = 2025,
default_scenario = "default",
scenario_name = "acceleration",
...
)
df |
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator. |
value_col |
Column name of column with indicator values. |
ind_ids |
Named vector of indicator codes for input indicators to the Billion.
Although separate indicator codes can be used than the standard, they must
be supplied as a named vector where the names correspond to the output of
|
scenario_col |
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format. |
start_year |
Base year for contribution calculation, defaults to 2018. |
baseline_year |
Year from which the scenario is measured.
Defaults to |
end_year |
End year(s) for contribution calculation, defaults to 2019 to 2025. |
default_scenario |
name of the default scenario. |
scenario_name |
Name of the scenario. Defaults to scenario_percent_change_baseline_year |
... |
additional parameters to be passed to scenario function |
accelerate_espar()
accelerate espar by aiming at the best value between the regional average
(WHO regions) and the value last year of the last year with complete espar
data (with categories and sub-categories).
data frame with acceleration scenario binded to df
. scenario_col
is
set to acceleration
HEP acceleration scenarios
accelerate_cholera_campaign()
,
accelerate_detect()
,
accelerate_measles_routine()
,
accelerate_meningitis_campaign()
,
accelerate_polio_routine()
,
accelerate_yellow_fever_campaign()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.