metacum.meta | R Documentation |
Performs a cumulative meta-analysis.
## S3 method for class 'meta'
metacum(
x,
pooled,
sortvar,
prediction,
overall = x$overall,
text.pooled,
no = 1,
cid = NULL,
cid.below.null = NULL,
cid.above.null = NULL,
small.values = "desirable",
...
)
metacum(x, ...)
## Default S3 method:
metacum(x, ...)
x |
An object of class |
pooled |
A character string indicating whether a common effect
or random effects model is used for pooling. Either missing (see
Details), |
sortvar |
An optional vector used to sort the individual
studies (must be of same length as |
prediction |
A logical indicating whether to report prediction intervals. |
overall |
A logical indicating whether overall results should be reported. |
text.pooled |
A character string used in printouts and forest plots to label the pooled effect estimate. |
no |
A numeric specifying which meta-analysis results to consider. |
cid |
A numeric value or vector specifying clinically important
differences (CID) / decision thresholds used to calculate expected
proportions of clinically important benefit or harm
(see |
cid.below.null |
A single numeric defining the decision threshold below
the null effect to distinguish clinically important from not important
effects (see |
cid.above.null |
A single numeric defining the decision threshold above
the null effect to distinguish clinically important from not important
effects (see |
small.values |
A character string specifying whether small
treatment effects indicate a beneficial ( |
... |
Additional arguments (ignored). |
A cumulative meta-analysis is performed. Studies are included
sequentially as defined by sortvar
.
Information from object x
is utilised if argument
pooled
is missing. A common effect model is assumed
(pooled = "common"
) if argument x$common
is
TRUE
; a random effects model is assumed (pooled =
"random"
) if argument x$random
is TRUE
and
x$common
is FALSE
.
An object of class "metacum"
with dedicated print and forest
functions.
The following list elements provide results from meta-analyses, each
adding one study at a time (see meta-object
for more
information on these list elements):
studlab, TE, seTE, df.random, lower, upper, statistic, pval, |
lower.predict, upper.predict, df.predict, w (sum of weights), |
tau2, se.tau2, lower.tau2, upper.tau2, tau, lower.tau, upper.tau, |
I2, lower.I2, upper.I2, Rb, n.harmonic.mean, t.harmonic.mean, |
k, k.study, k.all, k.TE, k.MH. |
The following list elements contain results of the original meta-analysis:
TE.pooled, seTE.pooled, df.random.pooled, |
lower.pooled, upper.pooled, statistic.pooled, pval.pooled, |
lower.predict.pooled, upper.predict.pooled, |
df.predict.pooled, w.pooled, |
tau2.pooled, se.tau2.pooled, lower.tau2.pooled, upper.tau2.pooled, |
tau.pooled, lower.tau.pooled, upper.tau.pooled, |
I2.pooled, lower.I2.pooled, upper.I2.pooled, Rb.pooled, |
n.harmonic.mean.pooled, t.harmonic.mean.pooled, |
k.pooled, k.study.pooled, k.all.pooled, k.TE.pooled, k.MH.pooled. |
Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
Cooper H & Hedges LV (1994): The Handbook of Research Synthesis. Newbury Park, CA: Russell Sage Foundation
forest.metacum
, print.metacum
,
cidprop
data(Fleiss1993bin)
m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
m1
metacum(m1)
metacum(m1, pooled = "random")
forest(metacum(m1))
forest(metacum(m1, pooled = "random"))
metacum(m1, sortvar = study)
metacum(m1, sortvar = 7:1)
m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
metacum(m2)
data(Fleiss1993cont)
m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "SMD")
metacum(m3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.