#' Cumulative meta-analysis
#'
#' @description
#' Performs a cumulative meta-analysis.
#'
#' @param x An object of class \code{meta}.
#' @param pooled A character string indicating whether a common effect
#' or random effects model is used for pooling. Either missing (see
#' Details), \code{"common"}, or \code{"random"}, can be abbreviated.
#' @param sortvar An optional vector used to sort the individual
#' studies (must be of same length as \code{x$TE}).
#' @param prediction A logical indicating whether to report prediction
#' intervals.
#' @param overall A logical indicating whether overall results should be
#' reported.
#' @param text.pooled A character string used in printouts and forest
#' plots to label the pooled effect estimate.
#' @param no A numeric specifying which meta-analysis results to
#' consider.
#' @param cid A numeric value or vector specifying clinically important
#' differences (CID) / decision thresholds used to calculate expected
#' proportions of clinically important benefit or harm
#' (see \code{\link{cidprop}}).
#' @param cid.below.null A single numeric defining the decision threshold below
#' the null effect to distinguish clinically important from not important
#' effects (see \code{\link{cidprop}}).
#' @param cid.above.null A single numeric defining the decision threshold above
#' the null effect to distinguish clinically important from not important
#' effects (see \code{\link{cidprop}}).
#' @param small.values A character string specifying whether small
#' treatment effects indicate a beneficial (\code{"desirable"}) or
#' harmful (\code{"undesirable"}) effect, can be abbreviated
#' (see \code{\link{cidprop}}).
#' @param \dots Additional arguments (ignored).
#'
#' @details
#' A cumulative meta-analysis is performed. Studies are included
#' sequentially as defined by \code{sortvar}.
#'
#' Information from object \code{x} is utilised if argument
#' \code{pooled} is missing. A common effect model is assumed
#' (\code{pooled = "common"}) if argument \code{x$common} is
#' \code{TRUE}; a random effects model is assumed (\code{pooled =
#' "random"}) if argument \code{x$random} is \code{TRUE} and
#' \code{x$common} is \code{FALSE}.
#'
#' @return
#' An object of class \code{"metacum"} with dedicated print and forest
#' functions.
#'
#' The following list elements provide results from meta-analyses, each
#' adding one study at a time (see \code{\link{meta-object}} for more
#' information on these list elements):
#' \tabular{l}{
#' \cr
#' studlab, TE, seTE, df.random, lower, upper, statistic, pval, \cr
#' lower.predict, upper.predict, df.predict, w (sum of weights), \cr
#' tau2, se.tau2, lower.tau2, upper.tau2, tau, lower.tau, upper.tau, \cr
#' I2, lower.I2, upper.I2, Rb, n.harmonic.mean, t.harmonic.mean, \cr
#' k, k.study, k.all, k.TE, k.MH.
#' }
#'
#' The following list elements contain results of the original meta-analysis:
#' \tabular{l}{
#' \cr
#' TE.pooled, seTE.pooled, df.random.pooled, \cr
#' lower.pooled, upper.pooled, statistic.pooled, pval.pooled, \cr
#' lower.predict.pooled, upper.predict.pooled, \cr
#' df.predict.pooled, w.pooled, \cr
#' tau2.pooled, se.tau2.pooled, lower.tau2.pooled, upper.tau2.pooled, \cr
#' tau.pooled, lower.tau.pooled, upper.tau.pooled, \cr
#' I2.pooled, lower.I2.pooled, upper.I2.pooled, Rb.pooled, \cr
#' n.harmonic.mean.pooled, t.harmonic.mean.pooled, \cr
#' k.pooled, k.study.pooled, k.all.pooled, k.TE.pooled, k.MH.pooled.
#' }
#'
#' @author Guido Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{forest.metacum}}, \code{\link{print.metacum}},
#' \code{\link{cidprop}}
#'
#' @references
#' Cooper H & Hedges LV (1994):
#' \emph{The Handbook of Research Synthesis}.
#' Newbury Park, CA: Russell Sage Foundation
#'
#' @examples
#' data(Fleiss1993bin)
#' m1 <- metabin(d.asp, n.asp, d.plac, n.plac,
#' data = Fleiss1993bin, studlab = study, sm = "RR", method = "I")
#' m1
#' metacum(m1)
#' metacum(m1, pooled = "random")
#'
#' forest(metacum(m1))
#' forest(metacum(m1, pooled = "random"))
#'
#' metacum(m1, sortvar = study)
#' metacum(m1, sortvar = 7:1)
#'
#' m2 <- update(m1, title = "Fleiss1993bin meta-analysis", backtransf = FALSE)
#' metacum(m2)
#'
#' data(Fleiss1993cont)
#' m3 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
#' data = Fleiss1993cont, sm = "SMD")
#' metacum(m3)
#'
#' @rdname metacum
#' @method metacum meta
#' @export
metacum.meta <- function(x, pooled, sortvar, prediction, overall = x$overall,
text.pooled, no = 1,
cid = NULL,
cid.below.null = NULL, cid.above.null = NULL,
small.values = "desirable",
...) {
##
##
## (1) Check for meta object and upgrade older meta objects
##
##
chkclass(x, "meta")
chksuitable(x, "Cumulative meta-analysis",
c("trimfill", "metamerge", "netpairwise"))
#
x <- updateversion(x)
#
if (!is.null(x$three.level) && x$three.level)
stop("Cumulative meta-analysis not implemented for a ",
"multi-level meta-analysis.",
call. = FALSE)
#
k.all <- length(x$TE)
if (k.all < 2) {
warning("Nothing calculated (minimum number of studies: 2).")
return(invisible(NULL))
}
##
##
## (2) Check other arguments
##
##
if (!missing(pooled)) {
pooled <- setchar(pooled, c("common", "random", "fixed"))
pooled[pooled == "fixed"] <- "common"
}
else
if (!x$common & x$random)
pooled <- "random"
else
pooled <- "common"
#
if (missing(prediction))
prediction <- pooled == "random" & x$prediction
else
chklogical(prediction)
#
chklogical(overall)
#
tdist_random <- pooled == "random" & x$method.random.ci %in% c("HK", "KR")
tdist_predict <- !(x$method.predict %in% c("S", ""))
#
mc <- match.call()
error <-
try(sortvar <-
catch("sortvar", mc, x, sys.frame(sys.parent())),
silent = TRUE)
if (inherits(error, "try-error")) {
sortvar <- catch("sortvar", mc, x$data, NULL)
if (isCol(x$data, ".subset"))
sortvar <- sortvar[x$data$.subset]
}
sort <- !is.null(sortvar)
if (sort && (length(sortvar) != k.all))
stop("Number of studies in object 'x' and argument 'sortvar' ",
"have different length.")
if (!sort)
sortvar <- seq_len(k.all)
#
if (!is.null(cid))
chknumeric(cid, length = 1)
#
if (!is.null(cid.below.null))
chknumeric(cid.below.null, length = 1)
#
if (!is.null(cid.above.null))
chknumeric(cid.above.null, length = 1)
#
avail.cid <- !is.null(cid) && !all(is.na(cid))
avail.cid.below.null <-
!is.null(cid.below.null) && !all(is.na(cid.below.null))
avail.cid.above.null <-
!is.null(cid.above.null) && !all(is.na(cid.above.null))
#
run_cidprop <- avail.cid | avail.cid.below.null | avail.cid.above.null
##
##
## (3) Sort variables
##
##
o <- order(sortvar)
##
n.e <- x$n.e[o]
n.c <- x$n.c[o]
n <- x$n[o]
##
event.e <- x$event.e[o]
event.c <- x$event.c[o]
event <- x$event[o]
##
mean.e <- x$mean.e[o]
mean.c <- x$mean.c[o]
mean <- x$mean[o]
##
sd.e <- x$sd.e[o]
sd.c <- x$sd.c[o]
sd <- x$sd[o]
##
time.e <- x$time.e[o]
time.c <- x$time.c[o]
time <- x$time[o]
##
cor <- x$cor[o]
##
TE <- x$TE[o]
seTE <- x$seTE[o]
#
if (!is.null(x$cluster))
cluster <- x$cluster[o]
else
cluster <- NULL
#
if (!is.null(x$weights.common))
weights.common <- x$weights.common[o]
else
weights.common <- NULL
#
if (!is.null(x$weights.random))
weights.random <- x$weights.random[o]
else
weights.random <- NULL
#
incr.e <- x$incr.e[o]
incr.c <- x$incr.c[o]
#
if (length(x$incr) > 1)
incr <- x$incr[o]
else if (!is.null(x$incr))
incr <- rep_len(x$incr, k.all)
else
incr <- x$incr
##
## Exclude studies from meta-analysis
##
if (!is.null(x$exclude))
exclude <- x$exclude[o]
else
exclude <- rep_len(FALSE, k.all)
##
ncum <- cumsum(!exclude)
##
studlab <- x$studlab[o]
slab <- character(k.all)
for (i in seq_len(k.all))
slab[i] <- paste0("Adding ", studlab[i], " (k=", ncum[i], ")")
##
chknumeric(no, min = 1, length = 1)
##
## Select a single common effect or random effects models
##
if (pooled == "common") {
if (no > length(x$seTE.common))
stop("Argument 'no' must be smaller or equal to ",
"number of common effect estimates.",
call. = FALSE)
##
no.c <- no
no.r <- 1
}
else {
if (no > length(x$seTE.random))
stop("Argument 'no' must be smaller or equal to ",
"number of random effects estimates.",
call. = FALSE)
##
no.c <- 1
no.r <- no
}
##
x$TE.common <- x$TE.common[no.c]
x$seTE.common <- x$seTE.common[no.c]
x$statistic.common <- x$statistic.common[no.c]
x$pval.common <- x$pval.common[no.c]
x$lower.common <- x$lower.common[no.c]
x$upper.common <- x$upper.common[no.c]
x$zval.common <- x$zval.common[no.c]
x$text.common <- x$text.common[no.c]
##
if (length(x$TE.random) == 1 &&
length(x$TE.random) != length(x$seTE.random))
x$TE.random <- rep_len(x$TE.random, length(x$seTE.random))
x$TE.random <- x$TE.random[no.r]
x$seTE.random <- x$seTE.random[no.r]
x$df.random <- x$df.random[no.r]
x$statistic.random <- x$statistic.random[no.r]
x$pval.random <- x$pval.random[no.r]
x$lower.random <- x$lower.random[no.r]
x$upper.random <- x$upper.random[no.r]
x$zval.random <- x$zval.random[no.r]
x$seTE.hakn.adhoc.ci <- x$seTE.hakn.adhoc.ci[no.r]
x$df.hakn.ci <- x$df.hakn.ci[no.r]
##
x$text.random <- x$text.random[no.r]
x$method.random.ci <- x$method.random.ci[no.r]
x$adhoc.hakn.ci <- x$adhoc.hakn.ci[no.r]
##
x$seTE.hakn.adhoc <- x$seTE.hakn.adhoc[no.r]
x$df.hakn <- x$df.hakn[no.r]
##
x$lower.predict <- x$lower.predict[1]
x$upper.predict <- x$upper.predict[1]
x$seTE.predict <- x$seTE.predict[1]
x$df.predict <- x$df.predict[1]
x$seTE.hakn.adhoc.pi <- x$seTE.hakn.adhoc.pi[1]
x$df.hakn.pi <- x$df.hakn.pi[1]
##
x$text.predict <- x$text.predict[1]
x$method.predict <- x$method.predict[1]
x$adhoc.hakn.pi <- x$adhoc.hakn.pi[1]
##
##
## (4) Do sensitivity analysis
##
##
res.i <- matrix(NA, ncol = 31, nrow = k.all)
add.i <- matrix(NA, ncol = 3, nrow = k.all)
##
for (i in seq_len(k.all)) {
sel <- 1:i
##
if (length(incr) > 1)
incr.i <- incr[sel]
else
incr.i <- incr
##
if (inherits(x, "metabin"))
m <- metabin(event.e[sel], n.e[sel], event.c[sel], n.c[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
method = x$method, sm = x$sm,
#
incr.e = incr.e[sel], incr.c = incr.c[sel],
allstudies = x$allstudies, MH.exact = x$MH.exact,
RR.Cochrane = x$RR.Cochrane, Q.Cochrane = x$Q.Cochrane,
model.glmm =
if (!is.null(x$model.glmm)) x$model.glmm else "UM.FS",
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metacont"))
m <- metacont(n.e[sel], mean.e[sel], sd.e[sel],
n.c[sel], mean.c[sel], sd.c[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
sm = x$sm,
pooledvar = replaceNA(x$pooledvar, gs("pooledvar")),
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metacor"))
m <- metacor(cor[sel], n[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
##
control = x$control)
##
if (inherits(x, "metagen"))
m <- metagen(TE[sel], seTE[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x,"metainc"))
m <- metainc(event.e[sel], time.e[sel],
event.c[sel], time.c[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
method = x$method, sm = x$sm,
#
incr.e = incr.e[sel], incr.c = incr.c[sel],
model.glmm =
if (!is.null(x$model.glmm)) x$model.glmm else "UM.FS",
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metamean"))
m <- metamean(n[sel], mean[sel], sd[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
sm = x$sm, null.effect = x$null.effect,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metaprop"))
m <- metaprop(event[sel], n[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
method = x$method, sm = x$sm, null.effect = x$null.effect,
##
incr = incr.i, method.incr = x$method.incr,
method.ci = x$method.ci,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
if (inherits(x, "metarate"))
m <- metarate(event[sel], time[sel],
##
exclude = exclude[sel],
#
cluster = cluster[sel], rho = x$rho,
#
weights.common = weights.common[sel],
weights.random = weights.random[sel],
#
method = x$method, sm = x$sm, null.effect = x$null.effect,
##
incr = incr.i, method.incr = x$method.incr,
##
method.tau = x$method.tau,
tau.preset = x$tau.preset, TE.tau = x$TE.tau,
##
level.ma = x$level.ma,
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
level.predict = x$level.predict,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
keepdata = FALSE,
warn = FALSE,
##
control = x$control)
##
sel.pft <- inherits(x, "metaprop") & x$sm == "PFT"
sel.irft <- inherits(x, "metarate") & x$sm == "IRFT"
##
add.i[i, ] <- c(m$method.tau.ci, # 1
m$sign.lower.tau, # 2
m$sign.upper.tau # 3
)
##
if (pooled == "common") {
res.i[i, ] <- c(m$TE.common, # 1
m$seTE.common, # 2
m$lower.common, # 3
m$upper.common, # 4
m$statistic.common, # 5
m$pval.common, # 6
#
m$tau2, # 7
m$lower.tau2, # 8
m$upper.tau2, # 9
m$se.tau2, # 10
#
m$tau, # 11
m$lower.tau, # 12
m$upper.tau, # 13
#
m$I2, # 14
m$lower.I2, # 15
m$upper.I2, # 16
#
m$Rb, # 17
#
sum(m$w.common, na.rm = TRUE), # 18
if (sel.pft) 1 / mean(1 / n[sel]) else NA, # 19
if (sel.irft) 1 / mean(1 / time[sel]) else NA, # 20
#
NA, # 21
#
NA, # 22
NA, # 23
NA, # 24
#
m$k, # 25
m$k.study, # 26
m$k.all, # 27
m$k.TE, # 28
replaceNULL(m$k.MH), # 29
NA, # 30
NA # 31
)
}
##
else if (pooled == "random") {
if (run_cidprop) {
pp <-
cidprop(m,
cid = cid,
cid.below.null = cid.below.null,
cid.above.null = cid.above.null,
small.values = small.values)
#
prop.cid.below.null <- pp$prop.cid.below.null
prop.cid.above.null <- pp$prop.cid.above.null
}
else {
prop.cid.below.null <- NA
prop.cid.above.null <- NA
}
#
res.i[i, ] <- c(m$TE.random, # 1
m$seTE.random, # 2
m$lower.random, # 3
m$upper.random, # 4
m$statistic.random, # 5
m$pval.random, # 6
#
m$tau2, # 7
m$lower.tau2, # 8
m$upper.tau2, # 9
m$se.tau2, # 10
#
m$tau, # 11
m$lower.tau, # 12
m$upper.tau, # 13
#
m$I2, # 14
m$lower.I2, # 15
m$upper.I2, # 16
#
m$Rb, # 17
#
sum(m$w.random, na.rm = TRUE), # 18
if (sel.pft) 1 / mean(1 / n[sel]) else NA, # 19
if (sel.irft) 1 / mean(1 / time[sel]) else NA, # 20
#
if (tdist_random) m$df.random else NA, # 21
#
m$lower.predict, # 22
m$upper.predict, # 23
if (tdist_predict) m$df.predict else NA, # 24
#
m$k, # 25
m$k.study, # 26
m$k.all, # 27
m$k.TE, # 28
replaceNULL(m$k.MH), # 29
prop.cid.below.null, # 30
prop.cid.above.null # 31
)
}
}
#
TE.i <- res.i[, 1]
seTE.i <- res.i[, 2]
lower.i <- res.i[, 3]
upper.i <- res.i[, 4]
statistic.i <- res.i[, 5]
pval.i <- res.i[, 6]
#
tau2.i <- res.i[, 7]
lower.tau2.i <- res.i[, 8]
upper.tau2.i <- res.i[, 9]
se.tau2.i <- res.i[, 10]
#
tau.i <- res.i[, 11]
lower.tau.i <- res.i[, 12]
upper.tau.i <- res.i[, 13]
#
I2.i <- res.i[, 14]
lower.I2.i <- res.i[, 15]
upper.I2.i <- res.i[, 16]
#
Rb.i <- res.i[, 17]
#
weight.i <- res.i[, 18]
n.harmonic.mean.i <- res.i[, 19]
t.harmonic.mean.i <- res.i[, 20]
#
df.random.i <- res.i[, 21]
#
lower.predict.i <- res.i[, 22]
upper.predict.i <- res.i[, 23]
df.predict.i <- res.i[, 24]
#
k.i <- res.i[, 25]
k.study.i <- res.i[, 26]
k.all.i <- res.i[, 27]
k.TE.i <- res.i[, 28]
k.MH.i <- res.i[, 29]
#
prop.cid.below.null <- res.i[, 30]
prop.cid.above.null <- res.i[, 31]
#
method.tau.ci <- replaceNULL(unique(add.i[add.i[, 1] != "", 1]), "")
sign.lower.tau.i <- replaceNULL(unique(add.i[add.i[, 2] != "", 2]), "")
sign.upper.tau.i <- replaceNULL(unique(add.i[add.i[, 3] != "", 3]), "")
#
if (pooled == "common") {
TE.pooled <- x$TE.common
seTE.pooled <- x$seTE.common
lower.pooled <- x$lower.common
upper.pooled <- x$upper.common
statistic.pooled <- x$statistic.common
pval.pooled <- x$pval.common
w.pooled <- sum(x$w.common, na.rm = TRUE)
#
lower.predict.pooled <- NA
upper.predict.pooled <- NA
}
#
else if (pooled == "random") {
TE.pooled <- x$TE.random
seTE.pooled <- x$seTE.random
lower.pooled <- x$lower.random
upper.pooled <- x$upper.random
statistic.pooled <- x$statistic.random
pval.pooled <- x$pval.random
w.pooled <- sum(x$w.random, na.rm = TRUE)
#
lower.predict.pooled <- x$lower.predict
upper.predict.pooled <- x$upper.predict
}
#
df.random.pooled <- x$df.random
#
tau2.pooled <- x$tau2
se.tau2.pooled <- x$se.tau2
lower.tau2.pooled <- x$lower.tau2
upper.tau2.pooled <- x$upper.tau2
#
tau.pooled <- x$tau
lower.tau.pooled <- x$lower.tau
upper.tau.pooled <- x$upper.tau
#
I2.pooled <- x$I2
lower.I2.pooled <- x$lower.I2
upper.I2.pooled <- x$upper.I2
#
Rb.pooled <- x$Rb
#
n.harmonic.mean.pooled <- 1 / mean(1 / n)
t.harmonic.mean.pooled <- 1 / mean(1 / time)
#
if (pooled == "random" & run_cidprop) {
pp.pooled <-
cidprop(x,
cid = cid,
cid.below.null = cid.below.null,
cid.above.null = cid.above.null,
small.values = small.values)
#
prop.cid.below.null.pooled <- pp.pooled$prop.cid.below.null
prop.cid.above.null.pooled <- pp.pooled$prop.cid.above.null
}
else {
prop.cid.below.null.pooled <- NA
prop.cid.above.null.pooled <- NA
}
##
##
## (5) Generate R object
##
##
if (missing(text.pooled))
text.pooled <- if (pooled == "common") x$text.common else x$text.random
#
res <- list(studlab = slab,
#
TE = TE.i,
seTE = seTE.i,
df.random = df.random.i,
lower = lower.i,
upper = upper.i,
statistic = statistic.i,
pval = pval.i,
#
lower.predict = lower.predict.i,
upper.predict = upper.predict.i,
df.predict = df.predict.i,
#
w = weight.i,
#
tau2 = tau2.i,
se.tau2 = se.tau2.i,
lower.tau2 = lower.tau2.i,
upper.tau2 = upper.tau2.i,
#
tau = tau.i,
lower.tau = lower.tau.i,
upper.tau = upper.tau.i,
#
sign.lower.tau = sign.lower.tau.i,
sign.upper.tau = sign.upper.tau.i,
#
I2 = I2.i,
lower.I2 = lower.I2.i,
upper.I2 = upper.I2.i,
#
Rb = Rb.i,
#
n.harmonic.mean = n.harmonic.mean.i,
t.harmonic.mean = t.harmonic.mean.i,
#
k = k.i,
k.study = k.study.i,
k.all = k.all.i,
k.TE = k.TE.i,
k.MH = k.MH.i,
#
prop.cid.below.null = prop.cid.below.null,
prop.cid.above.null = prop.cid.above.null,
cid.below.null = cid.below.null,
cid.above.null = cid.above.null,
small.values = small.values,
#
sm = x$sm,
null.effect = x$null.effect,
#
pooled = pooled,
common = pooled == "common",
random = pooled == "random",
overall = overall,
overall.hetstat = FALSE,
#
prediction = prediction,
method.predict = x$method.predict,
adhoc.hakn.pi = x$adhoc.hakn.pi,
#
backtransf = x$backtransf,
func.backtransf = x$func.backtransf,
#
level = x$level.ma,
level.ma = x$level.ma,
level.predict = x$level.predict,
#
method = x$method,
method.random = x$method.random,
#
method.common.ci = x$method.common.ci,
method.random.ci = x$method.random.ci,
adhoc.hakn.ci = x$adhoc.hakn.ci,
#
method.tau = x$method.tau,
method.tau.ci =
if (length(method.tau.ci) > 0) method.tau.ci else "",
#
tau.preset = x$tau.preset,
TE.tau = x$TE.tau,
#
method.I2 = x$method.I2,
#
k.pooled = x$k,
k.study.pooled = x$k.study,
k.all.pooled = x$k.all,
k.TE.pooled = x$k.TE,
k.MH.pooled = x$k.MH,
#
TE.pooled = TE.pooled,
seTE.pooled = seTE.pooled,
lower.pooled = lower.pooled,
upper.pooled = upper.pooled,
df.random.pooled = df.random.pooled,
statistic.pooled = statistic.pooled,
pval.pooled = pval.pooled,
w.pooled = w.pooled,
text.pooled = text.pooled,
#
lower.predict.pooled = lower.predict.pooled,
upper.predict.pooled = upper.predict.pooled,
df.predict.pooled = x$df.predict,
text.predict = x$text.predict,
#
prop.cid.below.null.pooled = prop.cid.below.null.pooled,
prop.cid.above.null.pooled = prop.cid.above.null.pooled,
#
Q.pooled = x$Q,
Q.Cochrane = x$Q.Cochrane,
#
tau2.pooled = tau2.pooled,
se.tau2.pooled = se.tau2.pooled,
lower.tau2.pooled = lower.tau2.pooled,
upper.tau2.pooled = upper.tau2.pooled,
#
tau.pooled = tau.pooled,
lower.tau.pooled = x$lower.tau,
upper.tau.pooled = upper.tau.pooled,
#
sign.lower.tau.pooled = x$sign.lower.tau,
sign.upper.tau.pooled = x$sign.upper.tau,
#
I2.pooled = I2.pooled,
lower.I2.pooled = lower.I2.pooled,
upper.I2.pooled = upper.I2.pooled,
#
Rb.pooled = Rb.pooled,
#
n.harmonic.mean.pooled = n.harmonic.mean.pooled,
t.harmonic.mean.pooled = t.harmonic.mean.pooled,
#
pscale = x$pscale,
irscale = x$irscale, irunit = x$irunit,
#
label.e = x$label.e,
label.c = x$label.c,
#
label.left = x$label.left,
label.right = x$label.right,
#
title = x$title, complab = x$complab,
outclab = x$outclab,
##
no = no,
##
x = x,
##
call = match.call())
#
if (!is.null(weights.common) & pooled == "common") {
res$weights.common <- TRUE
res$weights.random <- FALSE
}
#
if (!is.null(weights.random) & pooled == "random") {
res$weights.common <- FALSE
res$weights.random <- TRUE
}
#
if (run_cidprop) {
res$cid.below.null <- pp$cid.below.null
res$cid.above.null <- pp$cid.above.null
}
else {
res$prop.cid.below.null <- NULL
res$prop.cid.above.null <- NULL
res$cid.below.null <- NULL
res$cid.above.null <- NULL
res$small.values <- NULL
#
res$prop.cid.below.null.pooled <- NULL
res$prop.cid.above.null.pooled <- NULL
}
#
res$version <- packageDescription("meta")$Version
##
res$x$common <- res$common
res$x$random <- res$random
#
res$classes <- class(x)[class(x) != "meta"]
#
class(res) <- "metacum"
#
res
}
#' @rdname metacum
#' @export metacum
metacum <- function(x, ...)
UseMethod("metacum")
#' @rdname metacum
#' @method metacum default
#' @export
metacum.default <- function(x, ...)
stop("Cumulative meta-analysis not available for an object of class '",
class(x)[1], "'.",
call. = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.