Description Usage Arguments Value See Also Examples
Complete benchmark experiment to compare different learning algorithms across one or more tasks
w.r.t. a given resampling strategy. Experiments are paired, meaning always the same
training / test sets are used for the different learners.
Furthermore, you can of course pass “enhanced” learners via wrappers, e.g., a
learner can be automatically tuned using makeTuneWrapper.
1 2 |
learners |
[(list of) |
tasks |
[(list of) |
resamplings |
[(list of) |
measures |
[(list of) |
keep.pred |
[ |
models |
[ |
show.info |
[ |
[BenchmarkResult].
Other benchmark: BenchmarkResult,
batchmark,
convertBMRToRankMatrix,
friedmanPostHocTestBMR,
friedmanTestBMR,
generateCritDifferencesData,
getBMRAggrPerformances,
getBMRFeatSelResults,
getBMRFilteredFeatures,
getBMRLearnerIds,
getBMRLearnerShortNames,
getBMRLearners,
getBMRMeasureIds,
getBMRMeasures, getBMRModels,
getBMRPerformances,
getBMRPredictions,
getBMRTaskDescs,
getBMRTaskIds,
getBMRTuneResults,
plotBMRBoxplots,
plotBMRRanksAsBarChart,
plotBMRSummary,
plotCritDifferences,
reduceBatchmarkResults
1 2 3 4 5 6 7 8 9 10 11 12 | lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))
tasks = list(iris.task, sonar.task)
rdesc = makeResampleDesc("CV", iters = 2L)
meas = list(acc, ber)
bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rmat = convertBMRToRankMatrix(bmr)
print(rmat)
plotBMRSummary(bmr)
plotBMRBoxplots(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")
friedmanTestBMR(bmr)
friedmanPostHocTestBMR(bmr, p.value = 0.05)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.