Description Usage Arguments Value References See Also Examples
Decompose a learned prediction function as a sum of components estimated via partial dependence.
1 2 3  | 
obj | 
 [  | 
input | 
 [  | 
features | 
 [  | 
depth | 
 [  | 
fun | 
 [  | 
bounds | 
 [  | 
resample | 
 [  | 
fmin | 
 [  | 
fmax | 
 [  | 
gridsize | 
 [  | 
... | 
 additional arguments to be passed to   | 
[FunctionalANOVAData]. A named list, which contains the computed effects of the specified
depth amongst the features.
Object members:
data | 
 [  | 
task.desc | 
 [  | 
target | 
 The target feature for regression.  | 
features | 
 [  | 
interaction | 
 [  | 
Giles Hooker, “Discovering additive structure in black box functions.” Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining (2004): 575-580.
Other generate_plot_data: generateCalibrationData,
generateCritDifferencesData,
generateFeatureImportanceData,
generateFilterValuesData,
generateLearningCurveData,
generatePartialDependenceData,
generateThreshVsPerfData,
getFilterValues,
plotFilterValues
1 2 3  | fit = train("regr.rpart", bh.task)
fa = generateFunctionalANOVAData(fit, bh.task, c("lstat", "crim"), depth = 2L)
plotPartialDependence(fa)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.