Description Usage Arguments Value See Also Examples
Fuses a base learner with a filter method. Creates a learner object, which can be
used like any other learner object.
Internally uses filterFeatures before every model fit.
After training, the selected features can be retrieved with
getFilteredFeatures.
Note that observation weights do not influence the filtering and are simply passed down to the next learner.
1 2 3 |
learner |
[ |
fw.method |
[ |
fw.perc |
[ |
fw.abs |
[ |
fw.threshold |
[ |
fw.mandatory.feat |
[ |
... |
[any] |
[Learner].
Other filter: filterFeatures,
generateFilterValuesData,
getFilterValues,
getFilteredFeatures,
listFilterMethods,
makeFilter,
plotFilterValuesGGVIS,
plotFilterValues
Other wrapper: makeBaggingWrapper,
makeClassificationViaRegressionWrapper,
makeConstantClassWrapper,
makeCostSensClassifWrapper,
makeCostSensRegrWrapper,
makeDownsampleWrapper,
makeDummyFeaturesWrapper,
makeExtractFDAFeatsWrapper,
makeFeatSelWrapper,
makeImputeWrapper,
makeMulticlassWrapper,
makeMultilabelBinaryRelevanceWrapper,
makeMultilabelClassifierChainsWrapper,
makeMultilabelDBRWrapper,
makeMultilabelNestedStackingWrapper,
makeMultilabelStackingWrapper,
makeOverBaggingWrapper,
makePreprocWrapperCaret,
makePreprocWrapper,
makeRemoveConstantFeaturesWrapper,
makeSMOTEWrapper,
makeTuneWrapper,
makeUndersampleWrapper,
makeWeightedClassesWrapper
1 2 3 4 5 6 7 8 9 10 11 12 | task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeFilterWrapper(lrn, fw.perc = 0.5)
mod = train(lrn, task)
print(getFilteredFeatures(mod))
# now nested resampling, where we extract the features that the filter method selected
r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)
})
print(r$extract)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.