tests/testthat/test_classif_gamboost.R

context("classif_gamboost")

test_that("classif_gamboost", {
  requirePackagesOrSkip("mboost", default.method = "attach")

  parset.list1 = list(
    list(family = mboost::Binomial()),
    list(family = mboost::Binomial(), baselearner = "bols", control = mboost::boost_control(nu = 0.03, mstop = 100)),
    list(family = mboost::Binomial(link = "probit"), baselearner = "btree", control = mboost::boost_control(mstop = 200))
  )

  parset.list2 = list(
    list(),
    list(family = "Binomial", baselearner = "bols", nu = 0.03, mstop = 100),
    list(family = "Binomial", Binomial.link = "probit", baselearner = "btree", mstop = 200)
  )

  old.predicts.list = list()
  old.probs.list = list()

  for (i in seq_along(parset.list1)) {
    parset = parset.list1[[i]]
    pars = list(binaryclass.formula, data = binaryclass.train)
    pars = c(pars, parset)
    set.seed(getOption("mlr.debug.seed"))
    m = do.call(mboost::gamboost, pars)
    set.seed(getOption("mlr.debug.seed"))
    old.predicts.list[[i]] = predict(m, newdata = binaryclass.test, type = "class")
    set.seed(getOption("mlr.debug.seed"))
    old.probs.list[[i]] = 1 - predict(m, newdata = binaryclass.test, type = "response")[, 1]
  }

  testSimpleParsets("classif.gamboost", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.predicts.list, parset.list2)
  testProbParsets("classif.gamboost", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.probs.list, parset.list2)
})

test_that("classif_gamboost probability predictions with family 'AUC' and 'AdaExp'", {
  families = list("AUC", "AdaExp")
  lapply(families, FUN = function(x){
    lrn = makeLearner("classif.gamboost", par.vals = list(family = x), predict.type = "prob")
    mod = train(lrn, binaryclass.task)
    expect_error(predict(mod, binaryclass.task), "support probabilities")
  })
})
guillermozbta/s2 documentation built on Jan. 2, 2018, 12:25 a.m.