require(hydroCR)
require(rcm2019)
fill.na <- function(x, i=5) {
if( is.na(x)[i] ) {
return( round(mean(x, na.rm = TRUE), 4) )
} else {
return( x[i] )
}
}
preciwei = function(x){
w = x/sum(x)
return(w/sum(w))
}
################
setwd('/home/mha/Dropbox/melichar/data/GIS/')
s = readOGR('PLO40hranice_S-JTSK_Krovak_East_North.shp')
ws = krov2wgs(s)
rws = rotatePoly(ws)
dem = raster('srtm_krov500r.tif')
projection(dem) = s@proj4string
asp = terrain(dem, opt = 'aspect')
slo = terrain(dem, opt = 'slope')
xy = coordinates(dem)
xy = krov2wgs(SpatialPoints(xy))
rxy = rotatePoints(xy)
setdp('chars')
preci = raster('srazky_8110.nc')
kpreci = projectRaster(preci, crs = s@proj4string)
#temp = raster('teplota_8110.tif')
#ktemp = projectRaster(temp, crs = s@proj4string)
preci = crop(preci, buffer(ws, 0.2))
pxy = coordinates(preci)
rpxy = rotatePoints(SpatialPoints(pxy))
rpxy = SpatialPointsDataFrame(rpxy, data = data.frame(PR = values(preci)))
finepreci = resample(kpreci, dem, method = 'ngb')
#ktemp = crop(ktemp, buffer(s, 10000))
setwd(file.path(Sys.getenv('R_DATA_PATH'), 'RCM2019', 'annual'))
#setwd('/media/mha/KINGSTON/RCM2019/')
f = 'pr_EUR-11_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_SMHI-RCA4_v1_day_corr_19710101_21001231.nc'
d = dir(pattern = 'pr_')
f = d[1]
for (f in d){
setdp(file.path('MELICHAR', 'PR'))
if (file.exists(f)) next
cat(f, '\n\n')
setwd(file.path(Sys.getenv('R_DATA_PATH'), 'RCM2019', 'annual'))
p = brick(f, varname = 'pr')
cp = crop(p, buffer(rws, width = .2)) / 10 * 365.25
fillp = brick(cp)
values(fillp) = NA_real_
i = 1
for (i in 1:nlayers(fillp)){
fillp[[i]] <- focal(cp[[i]], w = matrix(1,3,3), fun = fill.na, pad = TRUE, na.rm = FALSE )
}
fillp = disaggregate(fillp, fact = 10, method = 'bilinear')
e = extract(fillp, rxy)
out = brick(dem, nl = nlayers(p))
values(out) = e
RES = brick(out)
values(RES) = 0
ii = 80
for (ii in 1:nlayers(out)){
cat(ii, '\t')
dta = data.table(coordinates(out[[1]]), fiPR = values(finepreci), rPR = values(out[[ii]]), ele = values(dem), asp = values(asp), slo = values(slo))
dta[, nx := scale(x)]
dta[, ny := scale(y)]
dta[, nrPR := scale(rPR)]
dta[, nele := scale(ele)]
dta[, nasp := scale(asp)]
dta[, nslo := scale(slo)]
dta[, nfiPR := scale(fiPR)]
m = lm(rPR ~ nx + ny + nfiPR + nele + nasp , data = dta)
dta[(!is.na(fiPR) & !is.na(nele) & !is.na(nrPR) & !is.na(asp)), PR := predict(m)]
res = raster(out)
values(res) = dta$PR
#names(res) = unique(p@z$Date)[ii]
RES[[ii]] = res
}
RES = mask(crop(RES, s), s)
names(RES) = year(unique(p@z$Date))
RES@z = list(unique(year(p@z$Date)))
setdp(file.path('MELICHAR', 'PR'))
#RES@z = list(unique(year(p@z$Date)))
writeRaster(RES, filename = f, overwrite = TRUE, varname = 'pr', varunit = 'mm/year', longname = 'precipitation', xname = 'x', yname = 'y', zname = 'time', zunit = 'year')
}
####
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.