selection.semi: Semi-parametric method for edge selection.

View source: R/semi.R

selection.semiR Documentation

Semi-parametric method for edge selection.

Description

Semi-parametric method for edge selection.

Usage

selection.semi(data, ...)

Arguments

data

Data Frame.

...

Any options can be defined.

  • px Dimension of variables in the semi-parametric method to be estimated using non-parametric method.

  • maxLambda Number used to generate the range of the tuning parameter for selection of Lambda matrix.

  • maxTheta Number used to generate the range of the tuning parameter for selection of Theta matrix.

  • iterLambda Number of iterations to find optimal Lambda matrix.

  • iterTheta Number of iterations to find optimal Theta matrix.

  • cutoff Cutoff value for squared projection.

  • N Number of simulations in non-parametric part to calculate the standard error.

  • semiMethod Method type to select optimal matrix in semi-parametric method.

Examples

library(huge)
n <- 200; p <- 20; px <- 5
# Simulate high dimension data
set.seed(5732)
z <- huge.generator(n, d = p, graph = "random", prob = .2, verbose = FALSE, vis = FALSE, v = .65)
data <- data.frame(z$data)
# Assume we estimate the first five variables using non-parametric method.
edge.selection(data = data, family ="semi", px = px)

haodongucsb/edgeSelection documentation built on May 8, 2022, 4:40 p.m.