ssden0 | R Documentation |
Generate quadrature for conditional density fit
ssden0( formula, type = NULL, data = list(), alpha = 1.4, weights = NULL, subset, na.action = na.omit, id.basis = NULL, nbasis = NULL, seed = NULL, domain = as.list(NULL), quad = NULL, qdsz.depth = NULL, bias = NULL, prec = 1e-07, maxiter = 30, skip.iter = TRUE )
formula |
Symbolic description of the model to be fit. |
type |
List specifying the type of spline for each variable. |
data |
Optional data frame containing the variables in the model. |
alpha |
Parameter defining cross-validation score for smoothing parameter selection. |
weights |
Optional vector of bin-counts for histogram data. |
subset |
Optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
Function which indicates what should happen when the data contain NAs. |
id.basis |
Index of observations to be used as "knots." |
nbasis |
Number of "knots" to be used. |
seed |
Seed to be used for the random generation of "knots." |
domain |
Data frame specifying marginal support of density. |
quad |
Quadrature for calculating integral. Mandatory if variables other than factors or numerical vectors are involved. |
qdsz.depth |
Depth for the generation of quadrature. |
bias |
Input for sampling bias. |
prec |
Precision requirement for internal iterations. |
maxiter |
Maximum number of iterations allowed for internal iterations. |
skip.iter |
Flag indicating whether to use initial values of theta and skip theta iteration. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.