ssden0: Generate quadrature for conditional density fit

View source: R/ssden0.R

ssden0R Documentation

Generate quadrature for conditional density fit

Description

Generate quadrature for conditional density fit

Usage

ssden0(
  formula,
  type = NULL,
  data = list(),
  alpha = 1.4,
  weights = NULL,
  subset,
  na.action = na.omit,
  id.basis = NULL,
  nbasis = NULL,
  seed = NULL,
  domain = as.list(NULL),
  quad = NULL,
  qdsz.depth = NULL,
  bias = NULL,
  prec = 1e-07,
  maxiter = 30,
  skip.iter = TRUE
)

Arguments

formula

Symbolic description of the model to be fit.

type

List specifying the type of spline for each variable.

data

Optional data frame containing the variables in the model.

alpha

Parameter defining cross-validation score for smoothing parameter selection.

weights

Optional vector of bin-counts for histogram data.

subset

Optional vector specifying a subset of observations to be used in the fitting process.

na.action

Function which indicates what should happen when the data contain NAs.

id.basis

Index of observations to be used as "knots."

nbasis

Number of "knots" to be used.

seed

Seed to be used for the random generation of "knots."

domain

Data frame specifying marginal support of density.

quad

Quadrature for calculating integral. Mandatory if variables other than factors or numerical vectors are involved.

qdsz.depth

Depth for the generation of quadrature.

bias

Input for sampling bias.

prec

Precision requirement for internal iterations.

maxiter

Maximum number of iterations allowed for internal iterations.

skip.iter

Flag indicating whether to use initial values of theta and skip theta iteration.


haodongucsb/edgeSelection documentation built on May 8, 2022, 4:40 p.m.