ssden2: Estimating joint density using smoothing splines

View source: R/ssden2.R

ssden2R Documentation

Estimating joint density using smoothing splines

Description

Estimating joint density using smoothing splines

Usage

ssden2(
  formula,
  type = NULL,
  data = list(),
  alpha = 1.4,
  weights = NULL,
  subset,
  na.action = na.omit,
  id.basis = NULL,
  nbasis = NULL,
  seed = NULL,
  domain = as.list(NULL),
  quad = NULL,
  prec = 1e-07,
  maxiter = 30,
  theta2 = NULL,
  w = NULL
)

Arguments

formula

Symbolic description of the model to be fit.

type

List specifying the type of spline for each variable.

data

Optional data frame containing the variables in the model.

alpha

Parameter defining cross-validation score for smoothing parameter selection.

weights

Optional vector of bin-counts for histogram data.

subset

Optional vector specifying a subset of observations to be used in the fitting process.

na.action

Function which indicates what should happen when the data contain NAs.

id.basis

Index of observations to be used as "knots."

nbasis

Number of "knots" to be used.

seed

Seed to be used for the random generation of "knots."

domain

Data frame specifying marginal support of density.

quad

Quadrature for calculating integral. Mandatory if variables other than factors or numerical vectors are involved.

prec

Precision requirement for internal iterations.

maxiter

Maximum number of iterations allowed for internal iterations.

theta2

Parameters for two-way interactions.

w

Optional vector to specify weights for two-way interactions.


haodongucsb/edgeSelection documentation built on May 8, 2022, 4:40 p.m.