context("layers")
source("utils.R")
test_succeeds("layer_activation_gelu", {
model = keras_model_sequential() %>%
layer_activation_gelu(input_shape=c(5L,5L))
model
})
test_succeeds("layer_filter_response_normalization", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_filter_response_normalization()
model
})
test_succeeds("layer_group_normalization", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_group_normalization()
model
})
test_succeeds("layer_instance_normalization", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_instance_normalization()
model
})
test_succeeds("layer_maxout", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_maxout(1)
model
})
test_succeeds("layer_poincare_normalize", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_poincare_normalize(1)
model
})
test_succeeds("layer_sparsemax", {
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%
layer_sparsemax()
model
})
test_succeeds("layer_weight_normalization", {
model = keras_model_sequential() %>%
layer_weight_normalization(input_shape = c(28L,28L,1L),
layer_conv_2d(filters = 10, kernel_size = c(3,3),
activation = 'relu')) %>%
layer_sparsemax()
model
})
test_succeeds("layer_multi_head_attention", {
mha = layer_multi_head_attention(head_size=128, num_heads=128)
query = tf$random$uniform(list(32L, 20L, 200L)) # (batch_size, query_elements, query_depth)
key = tf$random$uniform(list(32L, 15L, 300L)) # (batch_size, key_elements, key_depth)
value = tf$random$uniform(list(32L, 15L, 400L)) # (batch_size, key_elements, value_depth)
attention = mha(list(query, key, value)) # (batch_size, query_elements, value_depth)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.