Description Usage Arguments Value Examples
View source: R/cluster.fmmstil.parallel.divisive.R
Automatic model based clustering via fmmstil in parallel using divisive hierarchical method 1.
1 2 3 4 5 6 7 8 9 | cluster.fmmstil.parallel.divisive(
x,
ncore = 1,
criteria = c("ICL", "BIC", "AIC"),
init.cluster.method,
init.param.method,
show.progress = TRUE,
control = list()
)
|
x |
matrix of quantiles of size n x k. Each row is taken as a quantile. |
ncore |
a positive integer, represents the number of cpu threads to be used in parallel. By default 1. |
criteria |
Either 'ICL', 'BIC', or 'AIC'. Represents the type of information criteria used for model selection. By default 'ICL'. |
init.cluster.method |
a function of x, K that seperates x into K initial clusters. |
init.param.method |
a function of x, returns initial parameters. |
show.progress |
a logical value. If TRUE, progress of the algorithm will be printed in console. By default TRUE. |
control |
list of control variables, it accepts all control arguments used in fit.fmmstil.r and fit.fmmsil. |
a list with components:
res |
a list containing details of the best fitted distribution. |
record |
a list of lists containing details all fitted fmmstil.r. |
1 2 3 | # Not run:
# data(RiverFlow)
# cluster.fmmstil.parallel.divisive(as.matrix(log(RiverFlow)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.