ergoInfo | R Documentation |
Computes the Ergodicity Information Index
ergoInfo(
dynEGA.object,
use = c("edge.list", "unweighted", "weighted"),
shuffles = 5000
)
dynEGA.object |
A |
use |
Character (length = 1).
A string indicating what network element will be used
to compute the algorithm complexity, the list of edges or the weights of the network.
Defaults to
|
shuffles |
Numeric.
Number of shuffles used to compute the Kolmogorov complexity.
Defaults to |
Returns a list containing:
PrimeWeight |
The prime-weight encoding of the individual networks |
PrimeWeight.pop |
The prime-weight encoding of the population network |
Kcomp |
The Kolmogorov complexity of the prime-weight encoded individual networks |
Kcomp.pop |
The Kolmogorov complexity of the prime-weight encoded population network |
complexity |
The complexity metric proposed by Santora and Nicosia (2020) |
EII |
The Ergodicity Information Index |
Hudson Golino <hfg9s at virginia.edu> and Alexander Christensen <alexpaulchristensen@gmail.com>
Original Implementation
Golino, H., Nesselroade, J. R., & Christensen, A. P. (2022).
Toward a psychology of individuals: The ergodicity information index and a bottom-up approach for finding generalizations.
PsyArXiv.
# Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks
## Not run:
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
data = sim.dynEGA[,-26], n.embed = 5, tau = 1,
delta = 1, id = 25, use.derivatives = 1,
ncores = 2, corr = "pearson"
)
# Compute empirical ergodicity information index
eii <- ergoInfo(dyn.ega1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.