vn.entropy: Entropy Fit Index using Von Neumman's entropy (Quantum...

View source: R/vn.entropy.R

vn.entropyR Documentation

Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices

Description

Computes the fit of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data

Usage

vn.entropy(data, structure)

Arguments

data

Matrix or data frame. Contains variables to be used in the analysis

structure

Numeric or character vector (length = ncol(data)). A vector representing the structure (numbers or labels for each item). Can be theoretical factors or the structure detected by EGA

Value

Returns a list containing:

VN.Entropy.Fit

The Entropy Fit Index using Von Neumman's entropy

Total.Correlation

The total correlation of the dataset

Average.Entropy

The average entropy of the dataset

Author(s)

Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>

References

Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020). Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables. Multivariate Behavioral Research.

Examples

# Get EGA result
ega.wmt <- EGA(
  data = wmt2[,7:24], model = "glasso",
  plot.EGA = FALSE # no plot for CRAN checks
)

# Compute Von Neumman entropy
vn.entropy(ega.wmt$correlation, ega.wmt$wc)


hfgolino/EGA documentation built on Nov. 11, 2024, 9:28 p.m.