# January 9th 2009#
# Hinda Haned
#
#maximum likelihood estimation of the number of contributors, for each marker
likestim.loc<-
function(mix,freq,refpop=NULL,theta=NULL, loc=NULL)
{
if(is.null(loc))
{
mark <- mix@which.loc
}
else
{
mark <- loc
}
#the maximum is searched in the discrete interval : 1: 6, more contributors is unlikely ?
locres <- as.matrix(apply(sapply(1:6,function(i) lik.loc(i,mix,freq,refpop,theta, loc)),1,findmax))
rownames(locres) <- c('max','maxval')
return(t(locres))
}
#likestm.loc(mix1,freq1)
#
# maximum likelihood , estimation of the number of contributors for all markers, independence is assumed between markers
#if not, uses the Balding et Nichols (1994) correction for population subdivision effect
likestim<-
function( mix,freq,refpop=NULL,theta=NULL, loc=NULL)
{
tmp1 <- NULL
for(h in 1:6)
{
tmp1 <- c(tmp1, lik(x=h, mix,freq,refpop,theta, loc))
}
return(findmax(tmp1))
#return(tmp2)
}
#likestim((mix1,freq1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.