# Hinda Haned
# January 2010, Lyon
simPCR2<-function(ncells,probEx,probAlq,probPCR,cyc=28,Tdrop=2*10^7,probSperm=0.5,dip=TRUE,KH=55)
{
#standard verifications
if(is.null(ncells) || !is.numeric(ncells) || ncells <0)
{
stop("'ncells' must be a numeric giving the number of cells")
}
if(cyc<1){stop("Th number of PCR cycles must at least equal 1")}
if(Tdrop <10^7){stop("The threshold number of molecules must be >= 10^7" )}
#if the above conditions are verified, then the conversion to #cells is done
#diploid case
#if(dip){ ncells<-round(quant/6)}
#haploid case
#else{ncells<-round(quant/3)}
#cheking the probabilities input parameters:
#probEx: extrcation efficiency
if(!is.numeric(probEx) || is.na(probEx) || probEx <0 || probEx >1)
{
stop("'probEx' is a probability, it must belong to [0,1]")
}
#probAlq: probability of surviving for aliquots
if(!is.numeric(probAlq) || is.na(probAlq) || probAlq <0 || probAlq >1)
{
stop("'probAlq' is a probability, it must belong to [0,1]")
}
#probPCR: PCR efficiency
if(!is.numeric(probPCR) || is.na(probPCR) || probPCR <0 || probPCR >1)
{
stop("'pprobPCR' is a probability, it must belong to [0,1]")
}
#cyc: PCR cycle
if(!is.numeric(cyc) || is.na(cyc) || cyc <=0)
{
stop("'cyc' is the number of PCR cycles, it must be an integer > 0")
}
#At this point, we have all the input parameters
#Haploid cells: before the extraction process, we must define the numbers of alleles of type A and B
if(!dip)
{
#nAsperm: number of allele of type A, first simulate nAsperm
nAsperm<-rbinom(n=1,size=ncells,prob=probSperm)
nBsperm<-ncells-nAsperm
}
##################1st EXTRACTION STEP
#dipoloid celles case
if(dip)
{
#alleles of type A surviving the extraction process: nAs, are generated from a binomial distribution
#with parameters ncells (number of cells) and Probex (extrcation efficiency)
nAs<- rbinom(n=1,size=ncells,prob=probEx)
#alleles of type B surviving the extraction process: nBs
#surviving alleles of type B: nBs
nBs<- rbinom(n=1,size=ncells,prob=probEx)
}
#haploid cells
else
{
nAs<-rbinom(n=1, size=nAsperm,prob=probEx)
nBs<-rbinom(n=1,size=nBsperm,prob=probEx)
}
##################2nd EXTRACTION STEP: aliquots
#aliquots of type A
nA<-rbinom(n=1,size=nAs,prob=probAlq)
#aliquots of type B
nB<-rbinom(n=1,size=nBs,prob=probAlq)
##################PCR efficiency:
#for each cycle (defind in cyc), and each allele type
tmpA<-nA
tmpB<-nB
for(t in 1:cyc)
{
tmpA<-tmpA + rbinom(n=1,tmpA,prob=probPCR)
tmpB<-tmpB + rbinom(n=1,tmpB,prob=probPCR)
}
#detection threshold T=2x10^7
#converting from number of molecules to peak heights: to be improved
#diploid case
#generating peak heights: this might be subject to change during model calibration
vecH1 <- round(log((tmpA+Tdrop)/Tdrop) * KH)
vecH2 <- round(log((tmpB+Tdrop)/Tdrop) * KH)
a1<-as.integer(vecH1>50)
a2<-as.integer(vecH2>50)
n1<-as.integer(tmpA > Tdrop)*tmpA
n2<-as.integer(tmpB>Tdrop)*tmpB
Hb<-min(n1,n2)/max(n1,n2)
if(all(is.na(Hb))){
Hb<-0
}
res <- cbind.data.frame(vecH1, a1, vecH2, a2,Hb)
colnames(res) <- c("HeightA", "DropA", "HeightB", "DropB",'Hb')
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.