R/dispDeviance.R

Defines functions dispDeviance

Documented in dispDeviance

dispDeviance <- function(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE)
#	Deviance estimator of common dispersion
#	Gordon Smyth, Davis McCarthy
#	26 Jan 2011.  Last modified 30 Sep 2012.
{
#	Check y
	y <- as.matrix(y)

#	Check design
	if(is.null(design)) {
		design <- matrix(1,ncol(y),1)
		rownames(design) <- colnames(y)
		colnames(design) <- "Intercept"
	} else {
		design <- as.matrix(design)
	}

#	Check offset
	if(is.null(offset)) offset <- 0
	offset <- expandAsMatrix(offset,dim(y))
	if(min(interval)<0) stop("please give a non-negative interval for the dispersion")

#	Apply row sum filter
	small.row.sum <- rowSums(y)<min.row.sum
	if(any(small.row.sum)) {
		y <- y[!small.row.sum,,drop=FALSE]
		offset <- offset[!small.row.sum,,drop=FALSE]
	}
	if(nrow(y)<1) stop("no data rows with required number of counts")

#	Apply systematic subset by AveLogCPM
	if(!is.null(subset) && subset<=nrow(y)/2) {
		if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,offset=offset)
		i <- systematicSubset(subset,AveLogCPM)
		y <- y[i,,drop=FALSE]
		offset <- offset[i,,drop=FALSE]
	}

	Df <- ncol(y)-ncol(design)
	if(robust) {
		p <- pchisq(Df, df=Df)
		bias <- function(x) quantile(x,p)-Df
	} else {
		bias <- function(x) mean(x)-Df
	}

#	Function to be optimized
	fun <- function(par,y,design,offset) {
		fit <- glmFit(y,design,dispersion=par^4,offset=offset,prior.count=0)
		if(trace) cat(par^4,bias(fit$deviance),"\n")
		bias(fit$deviance)
	}

	if(fun(interval[1],y,design,offset)<=0) {
		return(interval[1])
	}

	if(fun(interval[2],y,design,offset)>0) {
		warning("dispersion estimate above interval upper limit")
		return(interval[2])
	}

	if(trace) cat("Dispersion, mean(deviance)-df\n")
	out <- uniroot(f=fun,interval=interval^0.25,y=y,design=design,offset=offset,tol=tol)
	out$root^4
}		
hiraksarkar/edgeR_fork documentation built on Dec. 20, 2021, 3:52 p.m.