Description Usage Arguments Value References
This function computes various analytical derivatives of the second stage log-likelihood function (the DCC part) of the (E)DCC-GARCH model.
1 | dlc(dcc.para, B, u, h, model)
|
dcc.para |
the estimates of the (E)DCC parameters (2 \times 1) |
B |
the estimated GARCH parameter matrix (N \times N) |
u |
a matrix of the used for estimating the (E)DCC-GARCH model (T \times N) |
h |
a matrix of the estimated conditional variances (T \times N) |
model |
a character string describing the model. |
a list with components:
dlc |
the gradient of the DCC log-likelihood function w.r.t. the DCC parameters (T \times 2) |
dvecP |
the partial derivatives of the DCC matrix, P_t w.r.t. the DCC parameters (T \times N^{2}) |
dvecQ |
the partial derivatives of the Q_t matrices w.r.t. the DCC parameters (T \times N^{2}) |
d2lc |
the Hessian of the DCC log-likelihood function w.r.t. the DCC parameters (T \times 4) |
dfdwd2lc |
the cross derivatives of the DCC log-likelihood function (T \times npar.h+2)
npar.h stand for the number of parameters in the GARCH part, npar.h = 3N
for |
Engle, R.F. and K. Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in Dec. 2001), New York University Stern School of Business.
Engle, R.F. (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic Statistics 20, 339–350.
Hafner, C.M. and H. Herwartz (2008), “Analytical Quasi Maximum Likelihood Inference in Multivariate Volatility Models.” Metrika 67, 219–239.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.