Description Usage Arguments Value Note References Examples
This function returns a log-likelihood of the (E)DCC-GARCH model.
1 | loglik.dcc(param, dvar, model)
|
param |
a vector of all the parameters in the (E)DCC-GARCH model |
dvar |
a matrix of the data used for estimating the (E)DCC-GARCH model (T \times N) |
model |
a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model |
the negative of the full log-likelihood of the (E)DCC-GARCH model
param
must be made by stacking all the parameter matrices.
Robert F. Engle and Kevin Sheppard (2001), “Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH.” Stern Finance Working Paper Series FIN-01-027 (Revised in Dec. 2001), New York University Stern School of Business.
Robert F. Engle (2002), “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalised Autoregressive Conditional Heteroskedasticity Models.” Journal of Business and Economic Statistics 20, 339–350.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
# Simulating data from the original DCC-GARCH(1,1) process
nobs <- 1000; cut <- 1000
a <- c(0.003, 0.005, 0.001)
A <- diag(c(0.2,0.3,0.15))
B <- diag(c(0.75, 0.6, 0.8))
uncR <- matrix(c(1.0, 0.4, 0.3, 0.4, 1.0, 0.12, 0.3, 0.12, 1.0),3,3)
dcc.para <- c(0.01,0.98)
dcc.data <- dcc.sim(nobs, a, A, B, uncR, dcc.para, model="diagonal")
# Estimating a DCC-GARCH(1,1) model
dcc.results <- dcc.estimation(inia=a, iniA=A, iniB=B, ini.dcc=dcc.para,
dvar=dcc.data$eps, model="diagonal")
# Parameter estimates and their robust standard errors
dcc.results$out
# Computing the value of the log-likelihood at the estimates
loglik.dcc(dcc.results$out[1,], dcc.data$eps, model="diagonal")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.