#' Summarizes data
#'
#' Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95\%).
#' Uses ddply() from the plyr library. From "Cookbook for R."
#'
#' @param data A data frame.
#' @param measurevar The name of a column that contains the variable to be summariezed
#' @param groupvars A vector containing names of columns that contain grouping variables
#' @param na.rm A boolean that indicates whether to ignore NA's
#' @param conf.interval The percent range of the confidence interval (default is 95\%)
#' @keywords hodgeslab summarySE sem sd ci
#' @export
#' @examples
#' df <- DNase; summarySE(df, measurevar="density", groupvars=c("Run","conc"))
#' df <- DNase; summarySE(df, measurevar="density", groupvars="conc")
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This does the summary. For each group's data frame, return a vector with
# N, mean, median, and sd
datac <- plyr::ddply(data, groupvars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
median = median(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)
},
measurevar
)
# Rename the "mean" column
# datac <- rename(datac, c("mean" = measurevar))
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.