inst/india_helpfunc.R

extractfit <- function(inb, fm, its)
{
    
    blsstr <- labels(terms(fm))
    attach(india)
    bls <- list()
    for(i in 1:length(blsstr))
        bls[[i]] <- eval(parse(text=blsstr[i]))
    detach(india)
    
    res <- list()
    res$blsstr <- blsstr
    res$its <- its
    res$coefs <- list()
    res$fits <- list()
    res$ensemble <- list()
    res$meanfits <- list()
    res$meancoefs <- list()
    
    for(i in 1:length(its))
    {
        coefs <- list()
        for(k in 1:length(bls))
            coefs[[k]] <- rep(0, dim(bls[[k]])[[2]])
        
        for(k in 1:its[i])
        {
            coefs[[inb$ensemble[k]]] <- coefs[[inb$ensemble[k]]] + inb$coef[[k]]
        }
        
        fits <- list()
        for(k in 1:length(bls))
            fits[[k]] <- bls[[k]] %*% coefs[[k]]
        
        meanfits <- list()
        for(k in 1:length(bls))
        {
            meanfits[[k]] <- fits[[k]] + inb$offset
            for(l in (1:length(bls))[-k])
            {
                if(!is.factor(india[,get("xname", environment(attr(bls[[l]], "dpp")))]))
                {
                    desX <- get("newX", environment(attr(bls[[l]], "dpp")))
                    meanx <- mean(india[,get("xname", environment(attr(bls[[l]], "dpp")))])
                    meanfits[[k]] <- meanfits[[k]] + (desX(meanx)[1,,drop=FALSE] %*% coefs[[l]])[1,1]
                }
                else
                    meanfits[[k]] <- meanfits[[k]] + coefs[[l]][1]
            }
        }
        
        meancoefs <- list()
        for(k in 1:length(bls))
        {
            meancoefs[[k]] <- coefs[[k]] + inb$offset
            for(l in (1:length(bls))[-k])
            {
                if(!is.factor(india[,get("xname", environment(attr(bls[[l]], "dpp")))]))
                {
                    desX <- get("newX", environment(attr(bls[[l]], "dpp")))
                    meanx <- mean(india[,get("xname", environment(attr(bls[[l]], "dpp")))])
                    meancoefs[[k]] <- meancoefs[[k]] + (desX(meanx)[1,,drop=FALSE] %*% coefs[[l]])[1,1]
                }
                else
                    meancoefs[[k]] <- meancoefs[[k]] + coefs[[l]][1]
            }
        }
        
        res$ensemble[[i]] <- table(factor(inb$ensemble[1:its[i]], levels=1:length(blsstr), labels=blsstr))
        res$coefs[[i]] <- coefs
        res$fits[[i]] <- fits
        res$meanfits[[i]] <- meanfits
        res$meancoefs[[i]] <- meancoefs
    }
    
    return(res)
}

plotnonpar <- function(name="cage", index=1, label="age of the child", fit)
{
    nits <- length(fit$its)
    greyseq <- seq(0.9, 0, length=nits)
    
    ind <- (1:length(india[,name]))[!duplicated(india[,name])]
    o <- order(india[ind,name])
    ind <- ind[o]
    india[ind,name]
    
    plot(india[ind,name], fit$fits[[nits]][[index]][ind], type="l", xlab=label, ylab="")
    for(i in 1:nits)
        lines(india[ind,name], fit$fits[[i]][[index]][ind], col=grey(greyseq[i]))
    
    return(invisible())
}

plotnonpar2 <- function(name="cage", index=1, label="age of the child", fits)
{
    nits <- length(fits[[1]]$its)
    ind <- (1:length(india[,name]))[!duplicated(india[,name])]
    o <- order(india[ind,name])
    ind <- ind[o]
    
    xplot <- india[ind,name]
    fitplot <- matrix(0, length(fits), length(xplot))
    for(i in 1:length(fits))
        fitplot[i,] <-  fits[[i]]$fits[[nits]][[index]][ind]
    rfit <- range(fitplot)
    
    plot(xplot, fitplot[1,], type="l", xlab=label, ylab="", ylim=c(rfit[1],rfit[2]))
    for(i in 2:length(fits))
        lines(xplot, fitplot[i,], lty=i)
    
    return(invisible())
}

plotnonpar3 <- function(name="cage", index=1, label="age of the child", fits)
{
    nits <- length(fits[[1]]$its)
    ind <- (1:length(india[,name]))[!duplicated(india[,name])]
    o <- order(india[ind,name])
    ind <- ind[o]
    
    xplot <- india[ind,name]
    fitplot <- matrix(0, length(fits), length(xplot))
    for(i in 1:length(fits))
        fitplot[i,] <-  fits[[i]]$meanfits[[nits]][[index]][ind]
    rfit <- range(fitplot)
    
    plot(xplot, fitplot[1,], type="l", xlab=label, ylab="", ylim=c(rfit[1],rfit[2]))
    for(i in 2:length(fits))
        lines(xplot, fitplot[i,], lty=i)
    
    return(invisible())
}


plotpar <- function(name = "csex", index = 3, label="sex of the child", fit)
{
    labels <- levels(india[,name])[-1]
    
    nits <- length(fit$its)
    mat <- matrix(0,nits,length(fit$coefs[[nits]][[index]])-1)
    for(i in 1:nits)
        mat[i,] <- fit$coefs[[i]][[index]][-1]
    
    plot(fit$its, mat[,1], ylim=range(mat), type="l", xlab=label, ylab="")
    
    if(dim(mat)[2]>1)
    {
        for(i in 2:(dim(mat)[2]))
        {
            lines(fit$its, mat[,i])
        }
    }
    axis(4, at=mat[nits,], labels)
    
    return(invisible())
}

plotpar2 <- function(name = "csex", index = 3, label="sex of the child", fits)
{
    labels <- factor(levels(india[,name])[-1])
    
    nits <- length(fits[[1]]$its)
    mat <- matrix(0,length(fits),length(fits[[1]]$coefs[[nits]][[index]])-1)
    for(i in 1:length(fits))
        mat[i,] <- fits[[i]]$coefs[[nits]][[index]][-1]
    
    plot(labels, mat[1,], ylim=range(mat), ylab=label)
    for(i in 2:length(fits))
        plot(labels, mat[i,], lty=i, add=TRUE)
    return(invisible())
}

plotpar3 <- function(name = "csex", index = 3, label="sex of the child", fits)
{
    labels <- factor(levels(india[,name]))
    
    nits <- length(fits[[1]]$its)
    mat <- matrix(0,length(fits),length(fits[[1]]$meancoefs[[nits]][[index]]))
    for(i in 1:length(fits))
        mat[i,] <- fits[[i]]$meancoefs[[nits]][[index]]
    
    plot(labels, mat[1,], ylim=range(mat), ylab=label)
    for(i in 2:length(fits))
        plot(labels, mat[i,], lty=i, add=TRUE)
    return(invisible())
}
hofnerb/mboost documentation built on Nov. 13, 2019, 6:05 a.m.