vim.SurvAdjusted <- function (mprimes, mat.eval, inbagg,
cl, neighbor, set, score)
{
# For b-th iteration
# 1. mprimes includes all primes P_a^b of the b-th logic regression model
vec.improve <- numeric(ncol(mat.eval))
oob <- which(!(1:nrow(mat.eval)) %in% inbagg)
n.trees <- length(mprimes)
if (score != "PL"){
uni.death.times <- sort(unique(cl[, 1][cl[, 2] == 1]))
n.death <- length(uni.death.times)
}
primes <- unique(unlist(mprimes))
# 2. For each prime P_a found in 1., identify neighbors of P_a, composing primes
# of P_a and neighbors of composing primes of P_a. imp.primes includes all
# primes, for wich an improvement is calculated in iteration b
comp.primes <- unique(getComposingPrimes(primes, colnames(mat.eval)))
neighborprimes <- unique(unlist(getNeighbor(primes, neighbor, set,
colnames(mat.eval))))
neighborcomp.primes <- unique(unlist(getNeighbor(comp.primes, neighbor,
set, colnames(mat.eval))))
imp.primes <- unique(c(primes, neighborprimes, comp.primes, neighborcomp.primes))
# 3. For each prime i in imp.primes
for (i in 1:length(imp.primes)){
tmp.prime <- imp.primes[i]
# a) Identify neighbors of prime i, extended interactions of prime i
# and extended interactions of neighbor interactions of prime i,
# that are part of the logic model.
neighbortmp.primes <- unique(unlist(getNeighbor(tmp.prime, neighbor,
set, primes)))
ext.tmp.primes <- getExtendedPrimes(tmp.prime, primes)
ext.neighbortmp.primes <- getExtendedPrimes(neighbortmp.primes, primes)
setprime <- unique(c(tmp.prime, ext.tmp.primes, neighbortmp.primes,
ext.neighbortmp.primes))
# b) Remove all primes in setprime from the logic model
# and calculate the score of the reduced model.
red.primes <- lapply(mprimes, function (x, b = setprime) x[!(x %in% b)])
mat.model <- matrix(unlist(lapply(red.primes, function (x, e = mat.eval)
rowSums(e[, x, drop = FALSE]) > 0)), ncol = n.trees)
if (score == "PL"){
score.red <- getCoxScore(cl, mat.model, inbagg, oob)
} else {
score.red <- getSurvivalScore(mat.model, inbagg, oob, cl, score,
uni.death.times, n.death)
}
# c) Add prime i to the logic model and calculate the score of the new (full) model
id.change <- sapply(red.primes, length) != sapply(mprimes, length)
new.mprimes <- red.primes
new.mprimes[id.change] <- lapply(red.primes[id.change], function (x) append(x, tmp.prime))
mat.model <- matrix(unlist(lapply(new.mprimes, function (x, e = mat.eval)
rowSums(e[, x, drop = FALSE]) > 0)), ncol = length(mprimes))
if (score == "PL"){
score.full <- getCoxScore(cl, mat.model, inbagg, oob)
} else{
score.full <- getSurvivalScore(mat.model, inbagg, oob, cl, score,
uni.death.times, n.death)
}
# d) Calculate and save improvement
id.primes <- which(colnames(mat.eval) %in% tmp.prime)
vec.improve[id.primes] <- score.red - score.full
}
if (score == "PL"){
vec.improve <- -2 * vec.improve
} else if (score != "Brier"){
vec.improve <- -1 * vec.improve
}
names(vec.improve) <- colnames(mat.eval)
vec.improve
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.