vim.multipleNeighbor <- function (mprimes, mat.eval, inbagg, cl, prob.case = 0.5,
neighbor, set, useN = TRUE)
{
# For b-th iteration
vec.improve <- numeric(ncol(mat.eval))
oob <- which(!(1:nrow(mat.eval)) %in% inbagg)
# 1. Find all primes P_a^b of the b-th logic regression model
vec.mprimes <- unique(unlist(mprimes))
# 2. Identify neighbor interactions of primes found in 1.
neighborint <- getNeighbor(vec.mprimes, neighbor, set, colnames(mat.eval))
if (any(sapply(neighborint, is.null))){
mat.model <- matrix(unlist(lapply(mprimes, function (x, e = mat.eval)
rowSums(e[, x, drop = FALSE]) > 0)), ncol = length(mprimes))
sfm <- getMultipleScore(cl, mat.model, inbagg, oob, prob.case)
}
if(any(vec.mprimes %in% unlist(neighborint)))
neighborint <- check.neighborint(neighborint)
# 3. For each set of P_a^b and its neighbor interactions
for (h in 1:length(neighborint)){
# a) Remove P_a^b and its neighbor interactions from logic model
setneighbor <- c(names(neighborint)[h], unlist(neighborint[h]))
tmp.mprimes <- lapply(mprimes, function (x, b = setneighbor) x[!(x %in% b)])
# b) Calculate score of reduced model
mat.model <- matrix(unlist(lapply(tmp.mprimes, function (x, e = mat.eval)
rowSums(e[, x, drop = FALSE]) > 0)), ncol = length(mprimes))
score.red <- getMultipleScore(cl, mat.model, inbagg, oob, prob.case)
# c) Add each prime in setneighbor seperately to logic model and calculate score
if (length(setneighbor) > 1){
id.change <- sapply(tmp.mprimes, length) != sapply(mprimes, length)
for (j in 1:length(setneighbor)){
new.mprimes <- tmp.mprimes
new.mprimes[id.change] <- lapply(tmp.mprimes[id.change], function (x) append(x, setneighbor[j]))
mat.model <- matrix(unlist(lapply(new.mprimes, function (x, e = mat.eval)
rowSums(e[, x, drop = FALSE]) > 0)), ncol = length(mprimes))
score.full <- getMultipleScore(cl, mat.model, inbagg, oob, prob.case)
# d) Calculate and save improvement
id.primes <- which(colnames(mat.eval) %in% setneighbor[j])
vec.improve[id.primes] <- score.full - score.red
}
} else {
# d) Calculate and save improvement
id.primes <- which(colnames(mat.eval) %in% setneighbor)
vec.improve[id.primes] <- sfm - score.red
}
}
if (!useN)
vec.improve <- vec.improve/length(oob)
vec.improve
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.