modelIPDADnetmetareg <-function(){
# IPD
for (i in 1:np) { # loop through individuals
# binomial likelihood of 0/1 bianry outcome y for each individual i of study j in arm k
y[i]~dbern(p[i])
# logistic transformation with treatment-by-covariate interactions - to estimate Odds Ratio (OR)
logit(p[i]) <- u[studyid[i]]+theta[studyid[i],treat[i]]*(1-equals(treat[i],baseline[i]))+
beta.0[studyid[i]]*(x[i]-37)+
beta.w[studyid[i],treat[i]]*(x[i]-37)*(1-equals(treat[i],baseline[i]))#+
# beta.b[studyid[i],treat[i]]*(xbar[i])*(1-equals(treat[i],baseline[i]))
# beta.w[studyid[i],treat[i]]*(x[i])*(1-equals(treat[i],baseline[i]))
# beta.w[studyid[i],treat[i]]*(x[i]-xbar[i])*(1-equals(treat[i],baseline[i]))+
# beta.b[studyid[i],treat[i]]*xbar[i]*(1-equals(treat[i],baseline[i]))
}
for(j in 1:nIPD) { # loop through IPD studies
w[j,1]<- 0
theta[j,t[j,1]]<- 0
beta.w[j,t[j,1]] <- 0
beta.b[j,t[j,1]] <- 0
for (k in 2:na[j]) { # loop through non-referent IPD arms
# distribution of random effects
theta[j,t[j,k]] ~ dnorm(md[j,t[j,k]],precd[j,t[j,k]])
# accounting for correlation between effect sizes estimated in multi-arm trials
md[j,t[j,k]]<- mean[j,k] + sw[j,k]
w[j,k]<- (theta[j,t[j,k]] - mean[j,k])
sw[j,k]<- sum(w[j,1:(k-1)])/(k-1)
precd[j,t[j,k]]<- prec *2*(k-1)/k
# consistency equations
mean[j,k] <-d[t[j,k]] - d[t[j,1]]
beta.w[j,t[j,k]] <- b[t[j,k]] - b[t[j,1]]
#beta.w[j,t[j,k]] <- bw[t[j,k]] - bw[t[j,1]]
#beta.b[j,t[j,k]] <- bb[t[j,k]] - bb[t[j,1]]
}}
# AD
for (j in (nIPD+1):(nAD+nIPD)) { # loop through AD studies
w[j,1]<- 0
theta[j,t[j,1]]<- 0
for (k in 1:na[j]) { # loop through AD arms
# binomial likelihood of number of events for each study j in arm k
r[(j-nIPD),t[j,k]] ~ dbin(pa[j,t[j,k]],n[(j-nIPD),t[j,k]])
}
# referent arm
logit(pa[j,t[j,1]]) <- u[j]
for (k in 2:na[j]) { # loop through non-referent AD arms
# logistic transformation with treatment-by-covariate interactions in study-level - to estimate Odds Ratio (OR)
logit(pa[j,t[j,k]]) <- u[j]+theta[j,t[j,k]]+(b[t[j,k]] - b[t[j,1]])*(xbar.a[(j-nIPD)]-37)#(bb[t[j,k]] - bb[t[j,1]])*(xbar.a[(j-nIPD)])
# distribution of random effects
theta[j,t[j,k]] ~ dnorm(md[j,t[j,k]],precd[j,t[j,k]])
# accounting for correlation between effect sizes estimated in multi-arm trials
md[j,t[j,k]]<- mean[j,k] + sw[j,k]
w[j,k]<- (theta[j,t[j,k]] - mean[j,k])
sw[j,k]<- sum(w[j,1:(k-1)])/(k-1)
precd[j,t[j,k]]<- prec *2*(k-1)/k
# consistency equations
mean[j,k] <-d[t[j,k]] - d[t[j,1]]
#beta.b[j,t[j,k]] <- bb[t[j,k]] - bb[t[j,1]]
}
}
#** PRIORS
# prior distribution for log-odds in baseline arm of study j
for (j in 1:(nIPD+nAD)) {u[j] ~ dnorm(0,.01)}
# prior distribution of the progonostic regression coefficient
for (j in 1:nIPD) {
beta.0[j] ~ dnorm(0,.01)
}
# prior distribution for heterogeneity
tau ~ dnorm(0,1)%_%T(0,)
prec<- 1/pow(tau,2)
tau.sq<- pow(tau,2)
# prior distribution for basic parameters
d[ref] <- 0
bb[ref] <- 0
bw[ref] <- 0
b[ref] <- 0
for(k in 1:(ref-1)) {
d[k] ~ dnorm(0,.01)
# bw[k]~dnorm(m.betaw,prec.betaw)
# bb[k]~dnorm(m.betab,prec.betab)
b[k]~dnorm(m.betaw,prec.betaw)
# bw[k]<-m.betaw
# bb[k]<-m.betab
}
for(k in (ref+1):nt) {
d[k] ~ dnorm(0,.01)
b[k]~dnorm(m.betaw,prec.betaw)
# bw[k]~dnorm(m.betaw,prec.betaw)
# bb[k]~dnorm(m.betab,prec.betab)
# bw[k]<-m.betaw
# bb[k]<-m.betab
}
# prior distribution for regression coefficients
m.betaw~dnorm(0,1e-2)
tau.betaw~dunif(0,2)
tau.sq.betaw <- tau.betaw*tau.betaw
prec.betaw <- 1/tau.sq.betaw
m.betab~dnorm(0,1e-2)
tau.betab~dunif(0,2)
tau.sq.betab <- tau.betab*tau.betab
prec.betab <- 1/tau.sq.betab
##OR for each comparison
for(i in 1:(nt-1)) {
for (j in (i+1):nt) {
OR[j,i]<- exp(d[j] - d[i])
LOR[j,i]<- d[j] - d[i]}}
}
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.