#!!! think about it and ask Georgia: the quantile should be computed from min OR 0 to max dose
# functions to be used in net.structure
# 1. take the drug-dose and find its RCS transformation at
dose_to_rcs <- function(dose.per.drug,knot_probs=c(0.25,0.50,0.75)){
require('rms')
max.dose <- max(dose.per.drug)
min.dose <- min(dose.per.drug)
knots <- quantile(min.dose:max.dose,probs = knot_probs)
rcs.dose.per.drug <- rcspline.eval(dose.per.drug,knots = knots,inclx = TRUE)
return(rcs.dose.per.drug)
}
# 2. convert the data column to matrix ( row is study and column is arm (dose-level) )
col_to_mat <- function(data,var){
ns <-length(unique(data$studyid))
na <- as.numeric(table(data$studyid)) # number of arms per study
max.na <- max(na)
data$studyID <- as.numeric(as.factor(data$studyid)) # transform studyid to ordered numeric values
study_id <- unique(data$studyID)
varmat <- matrix(NA,ns,max.na)
for (i in 1:ns) {
varmat[i,1:as.numeric(table(data$studyID)[i])] <- var[data$studyID == study_id[i]]
}
return(varmat)
}
# 3. find the indices of the direct head-to-head comparisons
direct.comp.index <- function(data)
{
require(dplyr)
data <- dplyr::arrange(data, data$studyid, data$dose)
t1 <- vector()
t2 <- vector()
for (i in seq_along(unique(data[["studyid"]]))) {
subset <- subset(data, studyid==unique(data[["studyid"]])[i])
for (k in 2:nrow(subset)) {
t1 <- append(t1, subset[["drug"]][1])
t2 <- append(t2, subset[["drug"]][k])
if (is.na(subset[["drug"]][k])) {
stop()
}
}
}
comparisons <- data.frame(t1 = t1, t2 = t2)
comparisons <- comparisons %>% dplyr::group_by(t1, t2) %>%
dplyr::mutate(nr = dplyr::n())
comparisons <- unique(comparisons)
comparisons <- dplyr::arrange(comparisons, t1, t2)
row_name = comparisons$row_name
comparisons %<>% select(-row_name) %>% as.matrix
rownames(comparisons) = row_name
return(comparisons)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.