tabPanel("Measurements",
value="measurements",
class ="no-padding-tab",
sidebarLayout(
sidebarPanel(
width = 2,
h4("Data selection"),
uiOutput("selectInputCountry"),
# selectInput("regionLevel",
# "Region Level:",
# choices = list("station"="station","city"="city"),
# multiple=F,
# selected = "city"
# ),
uiOutput("selectInputRegion"),
selectInput("poll",
"Pollutant:",
choices = polls,
selected = rcrea::PM25,
multiple = T
),
selectInput("averaging",
"Time averaging:",
choices = averagings,
selected = "day"
),
# sliderInput("years", "Year", min=2010, max=2021, value=c(2018, 2021), step=1, sep = "", ticks = F),
sliderInput("meas_dates", "Dates",
min = as.Date("2010-01-01"),
max = lubridate::ceiling_date(lubridate::today(), "month"),
value=c(as.Date("2018-01-01"), lubridate::ceiling_date(lubridate::today(), "month")),
timeFormat="%b %Y"),
actionButton("meas_refresh",
"Refresh Measurements",
class="btn-primary"),
h4("Display options", id="h4_display"),
uiOutput("selectInputSources"),
sliderInput("running_width", "Rolling average (day)", min=1, max=30, value=14, step=1, sep = ""
),
# sliderInput("months", "Month", min=1, max=12, value=c(1, 12), step=1, sep = "", ticks = F
# ),
selectInput("plot_type",
"Plot type",
choices = plot_types,
selected = plot_types[2]
),
conditionalPanel( condition = "input.plot_type=='ts'",
checkboxInput("overlayCities", "Overlay cities", value=FALSE)),
# uiOutput("selectInputProcess"),
selectInput("process",
label=span("Processing:",
# tags$style(type = "text/css", "{width: 100%; justify-content: space-between;}"),
bsButton("qProcess", label = "", class="btn-help", icon = icon("question"), style = "info", size = "extra-small"),
class="inline-flex"),
multiple=T, choices = c(), selected = NULL),
bsPopover(id = "qProcess",
title = "Process Ids",
placement="right",
paste0(
"<ul>",
"<li><b>city_day:</b> Daily <b>observed</b> level [µg/m3 or ppm]</li>",
"<li><b>anomaly:</b> <b>Deweathered</b> indication of how observed values differs from what would be expected in these weather conditions [µg/m3 or ppm]</li>",
"<li><b>counterfactual:</b> Predicted level based on weather conditions (also called <i>predicted</i> [µg/m3 or ppm]</li>",
"<li><b>anomaly_vs_counterfactual:</b> <b>Deweathered</b> indication of how observed values differs from what would be expected in these weather conditions, ",
"expressed as (observed-predicted)/predicted [%]</li>",
"<li><b>anomaly_offsetted:</b> <b>Deweathered</b> indication of how observed values differs from what would be expected in these weather conditions, ",
"brought back to an absolute scale (observed-predicted) + average [µg/m3 or ppm]</li>",
"<li><b>trend</b>: long-term <b>deweathered</b> trend [µg/m3 or ppm]</li>",
"</ul>")
),
# uiOutput("selectInputTarget"),
uiOutput("selectInputScale"),
downloadButton(outputId="download_csv", "Download (.csv)", class="btn-secondary"),
downloadButton("download_rds", "Download (.rds)", class="btn-secondary")
),
# Show a plot of the generated distribution
mainPanel(
width=10,
htmlOutput("meas_plot_message", class="plot-msg"),
plotlyOutput("meas_plot", height = "100%") %>% withSpinner(color="#0dc5c1")
# DT::dataTableOutput("processes_table")
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.