load_spectrophotometer <- function(df) {
df %>%
dplyr::filter(name == "OD 730 nm Spectrophotometer") %>%
tidyr::unnest(value) %>%
janitor::clean_names() %>%
tidyr::pivot_longer(cols = starts_with("T"),
values_to = "OD_730",
names_to = "timepoint") %>%
dplyr::mutate(time = as.numeric(stringr::str_remove_all(timepoint, "[[:alpha:]]")),
time_h = ifelse(time == 24,
time,
time / 60)) %>%
tidyr::separate(sample,
into = c("strain", "induction"),
sep = " ") %>%
dplyr::select(-c(name, timepoint, time))
}
#' load_datasets
#'
#' @description Function to extract the plate reader OD measurements from the master dataset (data) containing all data sources
#'
#' @return A data.frame with the plate reader OD measurements
#'
#' @noRd
load_plate_reader_od <- function(df) {
df %>%
dplyr::filter(name == "OD Plate Reader") %>%
tidyr::unnest(value) %>%
janitor::clean_names() %>%
tidyr::pivot_longer(
cols = t0:t24h,
values_to = "OD_730",
names_to = "timepoint"
) %>%
dplyr::mutate(
time = as.numeric(stringr::str_remove_all(timepoint, "[[:alpha:]]")),
time_h = ifelse(time == 24,
time,
time / 60
)
) %>%
tidyr::separate(sample,
into = c("strain", "induction"),
sep = " "
) %>%
dplyr::mutate(
sample_type = ifelse(strain == "Blank", "blank", "sample"),
strain = ifelse(strain == "Blank", NA, strain)
) %>%
dplyr::select(-c(name, timepoint, time))
}
load_plate_reader_fl <- function(df) {
df %>%
dplyr::filter(name == "Fluorescence Plate Reader") %>%
tidyr::unnest(value) %>%
janitor::clean_names() %>%
tidyr::pivot_longer(cols = t0:t24h,
values_to = "fl",
names_to = "timepoint") %>%
dplyr::mutate(time = as.numeric(stringr::str_remove_all(timepoint, "[[:alpha:]]")),
time_h = ifelse(time == 24,
time,
time / 60)) %>%
tidyr::separate(sample,
into = c("strain", "induction"),
sep = " ") %>%
dplyr::mutate(sample_type = ifelse(strain == "Blank", "blank", "sample")) %>%
dplyr::select(-c(name, timepoint, time))
}
load_full_spectrum <- function(df) {
# browser()
df %>%
dplyr::filter(name == "Spectrum Spectrophotometer") %>%
tidyr::unnest(value) %>%
# clean_names() %>%
tidyr::pivot_longer(
cols = EVC_0:`petE_24h +`,
values_to = "abs",
names_to = "id"
) %>%
tidyr::separate(id, into = c("strain", "id"), sep = "_") %>%
tidyr::separate(id,
into = c("timepoint", "induction"),
sep = " ") %>%
dplyr::mutate(time = as.numeric(stringr::str_remove_all(timepoint, "[[:alpha:]]")),
time_h = ifelse(time == 24,
time,
time / 60)) %>%
tidyr::separate(
experiment_id,
into = c("dummy1", "location", "dummy2"),
sep = "_",
remove = F
) %>%
dplyr::select(-c(name, timepoint, time, dummy1, dummy2)) %>%
# create a column with the biological replicate
dplyr::group_by(location) %>%
dplyr::arrange(experiment_date) %>%
dplyr::mutate(
bio_replicate = dplyr::ntile(n = length(unique(experiment_date)))
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.