gsnca_p: Gene Sets Net Correlation Analysis (GSNCA) including...

View source: R/gsnca_p.R

gsnca_pR Documentation

Gene Sets Net Correlation Analysis (GSNCA) including permutation

Description

Gene Sets Net Correlation Analysis (GSNCA) including permutation

Usage

gsnca_p(
  object,
  group,
  perm.list,
  cor.method = "pearson",
  max.skip = 50,
  min.sd = 0.001
)

Arguments

object

Gene expression matrix. Genes in rows.

group

original groupping of samples, vector of 1's and 2's.

perm.list

list of permutation specs. Each component gives permutated sample indices

cor.method

correlation method

max.skip

maximum number of repeated permutation/bootstrap times to avoid zero STD

min.sd

a valid data matrix per group must have at least this much per-feature STD

Value

list of p-value and d-statistics of GSNCA

See Also

[gsnca_stat()] for the internal algorithm that returns the coexpression distance statistics.

Examples

data(meta)
BRCA <- datasets[['BRCA']]
smpCode <- substr(colnames(BRCA),14,15)
grp1 <- which(smpCode=='01')
grp2 <- which(smpCode=='11')
object <- BRCA[1:25,c(grp1,grp2)]
group <- c(rep(1,length(grp1)),rep(2,length(grp1)))
perm.list <- vector('list',500)
for (i in seq_len(500)) {perm.list[[i]] <- sample(ncol(object))}
gsnca.p.res <- gsnca_p(object,group,perm.list)


hui-sheen/MetaGSCA documentation built on April 9, 2022, 7:24 p.m.