D_H2 | R Documentation |
Computes the squared Hellinger distance between two normal densities parametrized by means mb
, mw
and standard deviations sdb
, sdw
.
D_H2(mb, sdb, mw, sdw)
mb |
mean of the first (base) normal density |
sdb |
standard deviation of the first (base) normal density |
mw |
mean of the second (weighted) normal density |
sdw |
standard deviation of the second (weighted) normal density |
H^2(π_1, π_w) = 1 - BC(π_1, π_w), where Bhattacharyya coefficient (BC) is a symmetric measure of affinity (Roos et al., 2015, Roos et al., 2021).
BC(π_1(ψ | y), π_w(ψ | y)) = \int_{-∞}^{∞} √{π_1(ψ | y) π_w(ψ | y)} d ψ.
BC between two normal densities reads
BC(π^N_1, π^N_w) = √{\frac{σ_1 σ_w}{\frac{σ^2_1+σ^2_w}{2} }} \exp ( -\frac{ (μ_w-μ_1)^2 }{4(σ^2_w + σ^2_1)} ),
For more details refer to Hunanyan et al., 2021.
A numeric value between (0, 1).
Roos, M., Martins, T., Held, L., Rue, H. (2015). Sensitivity analysis for Bayesian hierarchical models. Bayesian Analysis 10(2), 321-349. https://projecteuclid.org/euclid.ba/1422884977
Roos, M., Hunanyan, S., Bakka, H., Rue, H. (2021). Sensitivity and identification quantification by a relative latent model complexity perturbation in the Bayesian meta-analysis. Biometrical Journal. URL https://doi.org/10.1002/bimj.202000193
Hunanyan, S., Roos, M., Plummer, M., Rue, H. (2021). Quantification of empirical determinacy: the impact of likelihood weighting on posterior location and spread in Bayesian meta-analysis estimated with JAGS and INLA. Bayesian Analaysis (under review). https://arxiv.org/abs/2109.11870.
D_BCS
, D_BCL
D_H2(mb=0.4, sdb=0.3, mw=0.42, sdw=0.32)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.