Description Usage Arguments Details Examples
Create setting for GBM Survival with python #' @description This creates a setting for fitting GBM surivial model. You need sksurv python install. To install this open your command line and type: conda install -c sebp scikit-survival
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | setGBMSurvival(
loss = "coxph",
learningRate = 0.1,
nEstimators = c(100),
criterion = "friedman_mse",
minSamplesSplit = 2,
minSamplesLeaf = 1,
minWeightFractionLeaf = 0,
maxDepth = c(3, 10, 17),
minImpuritySplit = NULL,
minImpurityDecrease = 0,
maxFeatures = NULL,
maxLeafNodes = NULL,
presort = NULL,
subsample = 1,
dropoutRate = 0,
seed = NULL,
quiet = F
)
|
loss |
A string specifying the loss function to minimise (default: 'coxph' ) |
learningRate |
A double specifying the learning rate (controls convergence speed) |
nEstimators |
An integer specifying how many trees to build |
criterion |
Default: 'friedman_mse' |
minSamplesSplit |
An integer specifying min samples per tree split (complexity) |
minSamplesLeaf |
An integer specifying min samples per leaf (complexity) |
minWeightFractionLeaf |
Lookup |
maxDepth |
An integer specifying the max depth of trees (complexity) |
minImpuritySplit |
A double or NULL specifying the minimum impurity split |
minImpurityDecrease |
will add |
maxFeatures |
will add |
maxLeafNodes |
will add |
presort |
will add |
subsample |
will add |
dropoutRate |
will add |
seed |
will add |
quiet |
will add |
Pick the hyper-parameters you want to do a grid search for
1 2 3 4 5 | ## Not run:
gbmSurv <- setGBMSurvival(learningRate=c(0.1,0.01), nEstimators =c(10,50,100),
maxDepth=c(4,10,17), seed = 2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.