# This file is automatically generated, you probably don't want to edit this
correlationOptions <- if (requireNamespace('jmvcore')) R6::R6Class(
"correlationOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
corrvars = NULL,
ctrlvars = NULL,
personCoef = TRUE,
spearmanCoef = FALSE,
TetrachoricCoef = FALSE,
partialCoef = FALSE,
PolychoricCoef = FALSE,
BiserialCoef = FALSE,
sidSig = "twotailed",
GaussianPlot = FALSE,
shwSig = TRUE,
flgSig = TRUE, ...) {
super$initialize(
package='Correlations',
name='correlation',
requiresData=TRUE,
...)
private$..corrvars <- jmvcore::OptionVariables$new(
"corrvars",
corrvars,
suggested=list(
"nominal",
"continuous"),
permitted=list(
"numeric"))
private$..ctrlvars <- jmvcore::OptionVariables$new(
"ctrlvars",
ctrlvars,
suggested=list(
"continuous"),
permitted=list(
"numeric"))
private$..personCoef <- jmvcore::OptionBool$new(
"personCoef",
personCoef,
default=TRUE)
private$..spearmanCoef <- jmvcore::OptionBool$new(
"spearmanCoef",
spearmanCoef,
default=FALSE)
private$..TetrachoricCoef <- jmvcore::OptionBool$new(
"TetrachoricCoef",
TetrachoricCoef,
default=FALSE)
private$..partialCoef <- jmvcore::OptionBool$new(
"partialCoef",
partialCoef,
default=FALSE)
private$..PolychoricCoef <- jmvcore::OptionBool$new(
"PolychoricCoef",
PolychoricCoef,
default=FALSE)
private$..BiserialCoef <- jmvcore::OptionBool$new(
"BiserialCoef",
BiserialCoef,
default=FALSE)
private$..sidSig <- jmvcore::OptionList$new(
"sidSig",
sidSig,
options=list(
"onetailed",
"twotailed"),
default="twotailed")
private$..GaussianPlot <- jmvcore::OptionBool$new(
"GaussianPlot",
GaussianPlot,
default=FALSE)
private$..shwSig <- jmvcore::OptionBool$new(
"shwSig",
shwSig,
default=TRUE)
private$..flgSig <- jmvcore::OptionBool$new(
"flgSig",
flgSig,
default=TRUE)
self$.addOption(private$..corrvars)
self$.addOption(private$..ctrlvars)
self$.addOption(private$..personCoef)
self$.addOption(private$..spearmanCoef)
self$.addOption(private$..TetrachoricCoef)
self$.addOption(private$..partialCoef)
self$.addOption(private$..PolychoricCoef)
self$.addOption(private$..BiserialCoef)
self$.addOption(private$..sidSig)
self$.addOption(private$..GaussianPlot)
self$.addOption(private$..shwSig)
self$.addOption(private$..flgSig)
}),
active = list(
corrvars = function() private$..corrvars$value,
ctrlvars = function() private$..ctrlvars$value,
personCoef = function() private$..personCoef$value,
spearmanCoef = function() private$..spearmanCoef$value,
TetrachoricCoef = function() private$..TetrachoricCoef$value,
partialCoef = function() private$..partialCoef$value,
PolychoricCoef = function() private$..PolychoricCoef$value,
BiserialCoef = function() private$..BiserialCoef$value,
sidSig = function() private$..sidSig$value,
GaussianPlot = function() private$..GaussianPlot$value,
shwSig = function() private$..shwSig$value,
flgSig = function() private$..flgSig$value),
private = list(
..corrvars = NA,
..ctrlvars = NA,
..personCoef = NA,
..spearmanCoef = NA,
..TetrachoricCoef = NA,
..partialCoef = NA,
..PolychoricCoef = NA,
..BiserialCoef = NA,
..sidSig = NA,
..GaussianPlot = NA,
..shwSig = NA,
..flgSig = NA)
)
correlationResults <- if (requireNamespace('jmvcore')) R6::R6Class(
inherit = jmvcore::Group,
active = list(
instructions = function() private$.items[["instructions"]],
text1 = function() private$.items[["text1"]],
pearsontable = function() private$.items[["pearsontable"]],
spearmantable = function() private$.items[["spearmantable"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="Correlation")
self$add(jmvcore::Html$new(
options=options,
name="instructions",
title="Instructions",
visible=TRUE))
self$add(jmvcore::Preformatted$new(
options=options,
name="text1",
title="Pearson Correlation"))
self$add(jmvcore::Table$new(
options=options,
name="pearsontable",
title="Pearson Correlation",
visible=TRUE,
rows=1,
columns=list(
list(
`name`="var1",
`title`="Parameter1",
`type`="text"),
list(
`name`="var2",
`title`="Parameter2",
`type`="text"),
list(
`name`="r",
`title`="r",
`type`="number"),
list(
`name`="ci.low",
`title`="Lower",
`type`="number"),
list(
`name`="ci.high",
`title`="Upper",
`type`="number"),
list(
`name`="t",
`title`="t",
`type`="number"),
list(
`name`="df",
`title`="df",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"),
list(
`name`="n",
`title`="N",
`type`="number"))))
self$add(jmvcore::Table$new(
options=options,
name="spearmantable",
title="Result Table",
visible=TRUE,
rows=1,
columns=list(
list(
`name`="var",
`title`="",
`type`="text"),
list(
`name`="r",
`title`="Spearman r",
`type`="number"),
list(
`name`="ci.low",
`title`="Lower",
`type`="number"),
list(
`name`="ci.high",
`title`="Upper",
`type`="number"),
list(
`name`="t",
`title`="t",
`type`="number"),
list(
`name`="df",
`title`="df",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"),
list(
`name`="n",
`title`="N",
`type`="Integer"))))}))
correlationBase <- if (requireNamespace('jmvcore')) R6::R6Class(
"correlationBase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = 'Correlations',
name = 'correlation',
version = c(1,0,0),
options = options,
results = correlationResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = FALSE,
requiresMissings = FALSE)
}))
#' Correlation
#'
#'
#' @param data The data as a data frame.
#' @param corrvars .
#' @param ctrlvars .
#' @param personCoef \code{TRUE} (default) or \code{FALSE}, provide Pearson
#' @param spearmanCoef \code{TRUE} (default) or \code{FALSE}, provide Spearman
#' @param TetrachoricCoef \code{TRUE} (default) or \code{FALSE}, provide
#' Tetrachoric
#' @param partialCoef \code{TRUE} (default) or \code{FALSE}, provide Partial
#' @param PolychoricCoef \code{TRUE} (default) or \code{FALSE}, provide
#' Polychoric
#' @param BiserialCoef \code{TRUE} (default) or \code{FALSE}, provide Biserial
#' @param sidSig .
#' @param GaussianPlot \code{TRUE} (default) or \code{FALSE}, provide
#' correlation plot
#' @param shwSig .
#' @param flgSig .
#' @return A results object containing:
#' \tabular{llllll}{
#' \code{results$instructions} \tab \tab \tab \tab \tab a html \cr
#' \code{results$text1} \tab \tab \tab \tab \tab a preformatted \cr
#' \code{results$pearsontable} \tab \tab \tab \tab \tab a table \cr
#' \code{results$spearmantable} \tab \tab \tab \tab \tab a table \cr
#' }
#'
#' Tables can be converted to data frames with \code{asDF} or \code{\link{as.data.frame}}. For example:
#'
#' \code{results$pearsontable$asDF}
#'
#' \code{as.data.frame(results$pearsontable)}
#'
#' @export
correlation <- function(
data,
corrvars,
ctrlvars,
personCoef = TRUE,
spearmanCoef = FALSE,
TetrachoricCoef = FALSE,
partialCoef = FALSE,
PolychoricCoef = FALSE,
BiserialCoef = FALSE,
sidSig = "twotailed",
GaussianPlot = FALSE,
shwSig = TRUE,
flgSig = TRUE) {
if ( ! requireNamespace('jmvcore'))
stop('correlation requires jmvcore to be installed (restart may be required)')
if ( ! missing(corrvars)) corrvars <- jmvcore::resolveQuo(jmvcore::enquo(corrvars))
if ( ! missing(ctrlvars)) ctrlvars <- jmvcore::resolveQuo(jmvcore::enquo(ctrlvars))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(corrvars), corrvars, NULL),
`if`( ! missing(ctrlvars), ctrlvars, NULL))
options <- correlationOptions$new(
corrvars = corrvars,
ctrlvars = ctrlvars,
personCoef = personCoef,
spearmanCoef = spearmanCoef,
TetrachoricCoef = TetrachoricCoef,
partialCoef = partialCoef,
PolychoricCoef = PolychoricCoef,
BiserialCoef = BiserialCoef,
sidSig = sidSig,
GaussianPlot = GaussianPlot,
shwSig = shwSig,
flgSig = flgSig)
analysis <- correlationClass$new(
options = options,
data = data)
analysis$run()
analysis$results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.