# This file is automatically generated, you probably don't want to edit this
hcOptions <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"hcOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
mode = NULL,
labels = NULL,
vars = NULL,
stand = TRUE,
k = 2,
metric = "euclidean",
method = "ward.D2",
type = "rectangle",
plot = FALSE,
horiz = FALSE,
width = 500,
height = 500,
vars1 = NULL,
method1 = "average",
nb = 100,
dm = "correlation",
plot1 = FALSE,
width1 = 500,
height1 = 500, ...) {
super$initialize(
package="snowCluster",
name="hc",
requiresData=TRUE,
...)
private$..mode <- jmvcore::OptionList$new(
"mode",
mode,
options=list(
"simple",
"complex"))
private$..labels <- jmvcore::OptionVariable$new(
"labels",
labels,
suggested=list(
"nominal"),
permitted=list(
"id",
"factor"))
private$..vars <- jmvcore::OptionVariables$new(
"vars",
vars)
private$..stand <- jmvcore::OptionBool$new(
"stand",
stand,
default=TRUE)
private$..k <- jmvcore::OptionInteger$new(
"k",
k,
default=2,
min=1)
private$..metric <- jmvcore::OptionList$new(
"metric",
metric,
options=list(
"euclidean",
"manhattan",
"maximum",
"canberra",
"binary",
"minkowski"),
default="euclidean")
private$..method <- jmvcore::OptionList$new(
"method",
method,
options=list(
"ward.D",
"ward.D2",
"single",
"complete",
"average"),
default="ward.D2")
private$..type <- jmvcore::OptionList$new(
"type",
type,
options=list(
"rectangle",
"circular",
"phylogenic"),
default="rectangle")
private$..plot <- jmvcore::OptionBool$new(
"plot",
plot,
default=FALSE)
private$..clust <- jmvcore::OptionOutput$new(
"clust")
private$..horiz <- jmvcore::OptionBool$new(
"horiz",
horiz,
default=FALSE)
private$..width <- jmvcore::OptionInteger$new(
"width",
width,
default=500)
private$..height <- jmvcore::OptionInteger$new(
"height",
height,
default=500)
private$..vars1 <- jmvcore::OptionVariables$new(
"vars1",
vars1)
private$..method1 <- jmvcore::OptionList$new(
"method1",
method1,
options=list(
"average",
"median",
"centroid",
"ward.D",
"ward.D2",
"single",
"complete",
"mcquitty"),
default="average")
private$..nb <- jmvcore::OptionInteger$new(
"nb",
nb,
default=100,
min=10)
private$..dm <- jmvcore::OptionList$new(
"dm",
dm,
options=list(
"correlation",
"uncentered",
"abscor"),
default="correlation")
private$..plot1 <- jmvcore::OptionBool$new(
"plot1",
plot1,
default=FALSE)
private$..width1 <- jmvcore::OptionInteger$new(
"width1",
width1,
default=500)
private$..height1 <- jmvcore::OptionInteger$new(
"height1",
height1,
default=500)
self$.addOption(private$..mode)
self$.addOption(private$..labels)
self$.addOption(private$..vars)
self$.addOption(private$..stand)
self$.addOption(private$..k)
self$.addOption(private$..metric)
self$.addOption(private$..method)
self$.addOption(private$..type)
self$.addOption(private$..plot)
self$.addOption(private$..clust)
self$.addOption(private$..horiz)
self$.addOption(private$..width)
self$.addOption(private$..height)
self$.addOption(private$..vars1)
self$.addOption(private$..method1)
self$.addOption(private$..nb)
self$.addOption(private$..dm)
self$.addOption(private$..plot1)
self$.addOption(private$..width1)
self$.addOption(private$..height1)
}),
active = list(
mode = function() private$..mode$value,
labels = function() private$..labels$value,
vars = function() private$..vars$value,
stand = function() private$..stand$value,
k = function() private$..k$value,
metric = function() private$..metric$value,
method = function() private$..method$value,
type = function() private$..type$value,
plot = function() private$..plot$value,
clust = function() private$..clust$value,
horiz = function() private$..horiz$value,
width = function() private$..width$value,
height = function() private$..height$value,
vars1 = function() private$..vars1$value,
method1 = function() private$..method1$value,
nb = function() private$..nb$value,
dm = function() private$..dm$value,
plot1 = function() private$..plot1$value,
width1 = function() private$..width1$value,
height1 = function() private$..height1$value),
private = list(
..mode = NA,
..labels = NA,
..vars = NA,
..stand = NA,
..k = NA,
..metric = NA,
..method = NA,
..type = NA,
..plot = NA,
..clust = NA,
..horiz = NA,
..width = NA,
..height = NA,
..vars1 = NA,
..method1 = NA,
..nb = NA,
..dm = NA,
..plot1 = NA,
..width1 = NA,
..height1 = NA)
)
hcResults <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"hcResults",
inherit = jmvcore::Group,
active = list(
instructions = function() private$.items[["instructions"]],
clust = function() private$.items[["clust"]],
plot = function() private$.items[["plot"]],
plot1 = function() private$.items[["plot1"]],
text = function() private$.items[["text"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="Clustering Dendrogram",
refs="snowCluster")
self$add(jmvcore::Html$new(
options=options,
name="instructions",
title="Instructions",
visible=TRUE))
self$add(jmvcore::Output$new(
options=options,
name="clust",
title="Clustering",
varTitle="Clustering",
measureType="nominal",
clearWith=list(
"vars",
"labels",
"k",
"stand",
"metric",
"type",
"method")))
self$add(jmvcore::Image$new(
options=options,
name="plot",
title="Cluster Dendrogram",
requiresData=TRUE,
refs="factoextra",
visible="(plot)",
renderFun=".plot",
clearWith=list(
"vars",
"labels",
"k",
"stand",
"metric",
"type",
"method",
"width",
"height",
"horiz")))
self$add(jmvcore::Image$new(
options=options,
name="plot1",
title="Cluster Dendrogram with p-values",
requiresData=TRUE,
refs="pvclust",
visible="(plot1)",
renderFun=".plot1",
clearWith=list(
"vars1",
"nb",
"method1",
"dm",
"width1",
"height1")))
self$add(jmvcore::Preformatted$new(
options=options,
name="text",
title="Cluster Information",
visible="(plot1)"))}))
hcBase <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"hcBase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = "snowCluster",
name = "hc",
version = c(1,0,0),
options = options,
results = hcResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = FALSE,
requiresMissings = FALSE,
weightsSupport = 'none')
}))
#' Clustering Dendrogram
#'
#'
#' @param mode .
#' @param data The data as a data frame.
#' @param labels .
#' @param vars .
#' @param stand .
#' @param k .
#' @param metric .
#' @param method .
#' @param type .
#' @param plot .
#' @param horiz .
#' @param width .
#' @param height .
#' @param vars1 .
#' @param method1 .
#' @param nb .
#' @param dm .
#' @param plot1 .
#' @param width1 .
#' @param height1 .
#' @return A results object containing:
#' \tabular{llllll}{
#' \code{results$instructions} \tab \tab \tab \tab \tab a html \cr
#' \code{results$clust} \tab \tab \tab \tab \tab an output \cr
#' \code{results$plot} \tab \tab \tab \tab \tab an image \cr
#' \code{results$plot1} \tab \tab \tab \tab \tab an image \cr
#' \code{results$text} \tab \tab \tab \tab \tab a preformatted \cr
#' }
#'
#' @export
hc <- function(
mode,
data,
labels,
vars,
stand = TRUE,
k = 2,
metric = "euclidean",
method = "ward.D2",
type = "rectangle",
plot = FALSE,
horiz = FALSE,
width = 500,
height = 500,
vars1,
method1 = "average",
nb = 100,
dm = "correlation",
plot1 = FALSE,
width1 = 500,
height1 = 500) {
if ( ! requireNamespace("jmvcore", quietly=TRUE))
stop("hc requires jmvcore to be installed (restart may be required)")
if ( ! missing(labels)) labels <- jmvcore::resolveQuo(jmvcore::enquo(labels))
if ( ! missing(vars)) vars <- jmvcore::resolveQuo(jmvcore::enquo(vars))
if ( ! missing(vars1)) vars1 <- jmvcore::resolveQuo(jmvcore::enquo(vars1))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(labels), labels, NULL),
`if`( ! missing(vars), vars, NULL),
`if`( ! missing(vars1), vars1, NULL))
options <- hcOptions$new(
mode = mode,
labels = labels,
vars = vars,
stand = stand,
k = k,
metric = metric,
method = method,
type = type,
plot = plot,
horiz = horiz,
width = width,
height = height,
vars1 = vars1,
method1 = method1,
nb = nb,
dm = dm,
plot1 = plot1,
width1 = width1,
height1 = height1)
analysis <- hcClass$new(
options = options,
data = data)
analysis$run()
analysis$results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.