Description Usage Arguments Details Value Author(s) References
Specific Newton-Raphson based algorithm for the estimation of the fixed and random effects in a beta-binomial mixed effects model.
1 | EffectsEst.BBNR(y,m,beta,u,p,phi,D.,X,Z,maxiter)
|
y |
dependent response variable in the model. |
m |
maximum score number in each beta-binomial observation. |
beta |
initial values of the fixed-effects. |
u |
initial values of the random-effects. |
p |
initial values of the probability parameter of the beta-binomial distribution. |
phi |
estimated value of the dispersion parameter of the beta-binomial distribution. |
D. |
estimated value of the variance-covariance matrix of the random effects. |
X |
model matrix of the fixed effects. |
Z |
model matrix of the random effects. |
maxiter |
maximum number of iterations for the algorithm. |
EffectsEst.BBNR
function performs a Newton-Raphson based mamximum likelihood estimation of the fixed and random effects in a beta-binomial mixed-effects models given some initial values.
See Najera-Zuloaga J., Lee D.-J. & Arostegui I. (2018): A beta-binomial mixed-effects model approach for analysing longitudinal discrete and bounded outcomes, Biometrical Journal for more information.
EffectsEst.BBNR
returns a list of the estimates and variances of the fixed and random effects.
fixed.est |
estimated value of the fixed coefficients of the regression. |
random.est |
estimated value of the random coefficients of the regression. |
vcov.fixed |
variance-covariance matrix of the estiamtion of the fixed-effects. |
var.random |
variance of the estimation of the random effects. |
iter.fixrand |
numbero of iterations in the algorithm. |
conv.fixrand |
convergence og the algorithm. |
J. Najera-Zuloaga
D.-J. Lee
I. Arostegui
Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25.
Lee Y. & Nelder J. A. (1996): Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B, 58, 619-678.
Najera-Zuloaga J., Lee D.-J. & Arostegui I. (2018): A beta-binomial mixed-effects model approach for analysing longitudinal discrete and bounded outcomes, to appear in Biometrical Journal.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.